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Abstract

ARITHMETIC ACCELERATORS FOR A DIGITAL NEUROMORPHIC

PROCESSOR

Mantas Mikaitis
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 2020

This work explores a programmable accelerator for computing exponential and nat-
ural logarithm, functions that are common in Spiking Neural Network (SNN) models,
in the context of SpiNNaker neuromorphic chip. The accelerator is integrated in the
SpiNNaker2 chip, and the energy, area, and numerical accuracy tradeoffs are evalu-
ated. An early version of the accelerator with fixed-point arithmetic was included in a
prototype SpiNNaker2 chip and tested in silicon, while the final version with floating
point is, at the time of writing, in manufacturing as part of another SpiNNaker2 proto-
type chip. Software techniques for improving the accuracy of the exponential function
included in the very first SpiNNaker2 prototype chips are also presented.

Furthermore, a problem of simulation results being different on SpiNNaker from
those obtained using floating-point arithmetic is explored. Numerical accuracy of Or-
dinary Differential Equation (ODE) solvers for the Izhikevich neuron model, which was
previously shown to be a major challenge in fixed-point arithmetic, is addressed. Any
simulation of a physical system has multiple sources of errors, which include errors in
measurements, models, numerical methods, and finite-precision computer arithmetic.
Here the last source of error is addressed; it is shown, using the Izhikevich neuron
on SpiNNaker, that various problems with fixed-point arithmetic caused arithmetic er-
ror to be substantially larger than expected with 32-bit data types. Improvements are
found by utilizing rounding of the constants (on decimal to fixed-point format con-
version), rounding of the multiplier results, and usage of mixed-precision operations.
The stochastic rounding method, which rounds with the probability proportional to
the distance between numbers, is shown experimentally to improve the accuracy of a
series of ODE solvers beyond the standard rounding routines. As a result, a hardware
accelerator for the SpiNNaker2 chip is explored to speed up this rounding method.
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Chapter 1

Introduction

The SpiNNaker chip and its software have been in development since around 2006. A

second generation SpiNNaker chip is currently in development. Both chips are based

on general-purpose ARM processors, while the neuromorphic property comes from the

connectivity of large numbers of these ARM processors using networks-on-chip (NoCs)

and routers that control the traffic of neuronal spikes around the machine; and the

software — specifically, an event-driven programming model which allows the ARM

cores to send signals, enabled by the NoC and router, and trigger some computation at

the target ARM processors.

This chapter introduces the main aspects of these projects, with the discussion

about neuromorphic computing in general. It is pointed out that the significant cost

of using general purpose processors without support for specialized functions is a

serious limitation for simulating SNNs with plasticity. The main goal of the thesis

is to explore arithmetic hardware accelerators with multiple numerical formats and

accuracy control for SpiNNaker2, while another goal of the thesis is to find methods

for improving the accuracy of the models when low precision fixed-point arithmetic is

used instead of floating point, as is the case with the current generation SpiNNaker

machine.

1.1 Neuromorphic computing

Understanding the human brain is one of the biggest challenges facing scientists in
recent years. First, with the rise of ideas and need for artificial intelligence (AI), un-
derstanding the human brain can help us build better-performing AI. Today’s AI algo-
rithms are quite limited compared to the brain: the most common techniques (just to

19



20 CHAPTER 1. INTRODUCTION

mention a few of many in AI) are based on large functions that can classify diverse
data (deep neural networks) and reinforcement learning which works on the principle
of “learning from experience and feedback”. However, these frameworks are rather
limited in the sense that they usually do not work when moved to a new, arbitrary
environment requiring human intervention to retrain the classifiers or reprogram the
reinforcement learning agents to determine what is a mistake and what is a reward.

Another use case for understanding the brain better, and simulating it, is medical.
Diverse brain diseases that are not well understood due to the sheer complexity of
the brain usually do not have a known, generally applicable cure. Simulating these
diseases in a well-defined and controlled environment on a computer would provide
researchers with easier access for studies.

However, without even fully understanding the brain, we are now quite sure that us-
ing massive clusters of classical general-purpose computers is not going to be feasible
in terms of achieving at least biological simulation run-time and manageable electrical
power requirements. One of the goals of neuromorphic computing field is to enable
fast and energy-efficient simulation of large scale neural networks with complex be-
haviour [1]. This research field was started by Mead [2] with an observation that the
brain operates on analogue principles and is quite different from digital computers. He
demonstrated silicon neurons, mixed-signal circuits which replicate the properties of
the biological neurons directly in circuits rather than numerical simulations on digital
computers. Since then, various modern neuromorphic computers have been created
following those principles [3] but digital neuromorphic simulators have also been in
development [4] for greater programmability, and as platforms for research into neural
network models.

Neuromorphic chips and large-scale systems that include them are designed to ex-
ploit massive parallelism, using efficient networks-on-chip, to simulate artificial neu-
ral networks, optimized for a specific type of neural network called SNN. SpiNNaker,
completed in 2011, is one such computer, belonging to the digital neuromorphic chip
category [5, 6, 7]. Utilizing small, energy-efficient ARM cores, connected in one large
network, SpiNNaker can simulate large-scale, fully programmable1 SNNs in real-time
and with low energy usage. The largest network simulated so far on SpiNNaker with
Spike-Timing-Dependent Plasticity (STDP) [8] learning rules has 20000 neurons and

1“Fully programmable” refers to the difference between platforms like SpiNNaker which has soft-
ware neuron and synapse models and analogue neuromorphic platforms that have the models fixed in
hardware with minimal configurability.



1.2. SIMULATION ERRORS 21

51 million synapses [9] while the largest network without learning has 80000 neu-
rons and 300 million synapses [10]. However, as neuroscience advances, increasingly
complex neural network algorithms, especially learning algorithms describing synap-
tic plasticity, have been discovered; some have been simulated on SpiNNaker with the
realization that real-time replication of biological learning models is challenging. In
one recent experiment to simulate a reinforcement learning plasticity model (one of the
most complex plasticity models in terms of arithmetic requirements run on SpiNNaker
to date) [11] it was possible to simulate only 10000 neurons and 10 million synapses
before hitting real-time performance limits. This was mainly due to how the networks
were scaled up, which was done in a such a way that the number of incoming synapses
per neuron was dependent on the overall network size.

While SpiNNaker is based upon a fully programmable digital neuromorphic chip,
other approaches try to replicate neurons and synapses in the analogue domain, uti-
lizing hardware that simulates certain chosen models faster than using software. That
being noted, fully programmable neuromorphic chips are well suited for experimental
work, at the stage when a modeler of a specific neural network is experimenting with
neuron and synaptic plasticity models to achieve some behaviour, whereas analogue
neuromorphic chips are suitable for well-defined neural networks when the costs of
manufacturing such networks in hardware are known to pay off. Furthermore, some
neuromorphic chips are made as hybrids between analogue and digital [12] to allow
some part of the whole simulation algorithm to be fully programmable. Other solutions
are purely digital, but with limited programmability of supported models and limited
numerical precision [13], most likely to provide a faster, but still programmable, so-
lution to simulate neural networks. In summary, in contrast to more classical neuro-
morphic chips, SpiNNaker is a fully programmable SNN simulator, with high precision

arithmetic available (where high precision is a 32-bit numerical format and a set of
hardware arithmetic operations available on such a format), and this feature allows it
to support most of the neuron and synapse models expressed as numerical algorithms.

1.2 Simulation errors

Any simulation of a physical phenomena suffers from various sources of errors: ob-
servation error, when experiments are made and data about some physical system are
collected; error in a mathematical model that is created to describe the system’s be-
haviour; error in numerical method used to advance the model’s state; and error in
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the data conversion and operations performed in finite-precision computer arithmetic,
such as fixed- or floating-point arithmetics. In this thesis the last source of error is
addressed, for three reasons.

The first is that there are studies that show major differences between the results
of fixed- and floating-point arithmetics in simulating neuron models with equivalent
numerical methods [14, 15]. These differences are more significant than expected with
a 32-bit arithmetic and this source of error is dominating when compared with the error
caused by the numerical method used to solve differential equations [14]. The second
reason is that by default, the absolute rounding error of fixed-point arithmetic is 2−15≈
0.3× 10−4, which is a significant error and will accumulate if the rounding mode is
unidirectional, as shown in Chapter 3. The third reason is reproducibility — while
most of the neural network simulators enjoy single- or double-precision floating-point
arithmetics, SpiNNaker uses fixed point, and to increase reproducibility, fixed-point
arithmetic can be optimized in various ways to produce results that are closer to floating
point, making SpiNNaker results closer to those of other simulators [10, 15]. This is
important both when the same numerical method is used (very close reproducibility
possible as arithmetic error is close to zero) and when a different numerical method
is used on SpiNNaker (numerical method error dominating, instead of arithmetic as is
the case currently).

1.3 Arithmetic in digital computers

It was established that SpiNNaker is a digital computer and that it should provide a
full accuracy option for simulating SNNs. Digital computers, including SpiNNaker,
require arithmetic operations to be implemented in an algorithmic way, working on a
defined length of input vectors containing bits laid out in a manner dictated by a cho-
sen numerical format to approximately represent various physical quantities. This is in
contrast to analogue chips, that can implement specific model behaviours physically.
A set of the most common operations on integers, such as +, −, ×, shift are usually
provided in hardware on general-purpose processors. However, when real numbers
are required, those instructions might not always work in the same way and might
require some extra operations such as round and saturate. If a fixed-point numeri-
cal representation is used, most integer operations available on a processor will work,
with slight modifications and algorithmic implementation of rounding and saturation.
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On the other hand, if floating-point arithmetic is chosen, none of the hardware inte-
ger operations will work directly and therefore the arithmetic library either has to be
implemented using integer instructions or new hardware has to be introduced.

More complex operations such as sin, cos, exp, log, or pow are usually imple-
mented algorithmically in software using in the order of hundreds of processor in-
structions, depending on numerical format and accuracy [16]. In fields outside neuro-
science modelling and simulation it has been shown that some of the complex mathe-
matical functions dominate the overall computational time of certain algorithms. One
example is CERN’s Large Hadron Collider (LHC) Physics experiments [17, 18, 19]
which demonstrate high utilization of dividers for trigonometric functions in software,
and elementary functions; the exponential function is reported to take up to 60 % of
run time in some physics experiment reconstruction algorithms. Similarly, datacenter
applications reported by Microsoft Research [20] require a lot of log, exp and other
functions. If measured on a complex neuron and plasticity simulation with a small
timestep, SpiNNaker would most likely show a high usage of exponential function as
well (no such model is currently available on SpiNNaker — 1 ms timestep and fixed
synapses are used in most networks). Exponential is used in many places in SNN mod-
els to exponentially decay various quantities on each timestep update, and sometimes
on each spike. On SpiNNaker2 prototype [21], a plasticity model was explored which
was shown to use approximately 43 % of processor cycles available per simulation
timestep for computing software exponential function.

SpiNNaker is based on an ARM968 processor, which supports integer-only opera-
tions. Fixed-point arithmetic is implemented by interpreting integers as fixed-point real
numbers with appropriate shift on conversion and, on certain arithmetic operations, to
control where the binary point is. SpiNNaker2, on the other hand, will support single-
precision floating-point numbers with a hardware Floating-Point Unit (FPU). However,
one limitation of such a unit is that it keeps the intermediate results of any arithmetic
operation inside the FPU and therefore does not allow for experimenting with rounding
options apart from those that it supports (which are IEEE 754 standard [22] compli-
ant) or mixed-precision arithmetic algorithms. On the other hand, when working with
fixed-point values, one can control the desired rounding quite easily.

Both SpiNNaker and SpiNNaker2 are 32-bit processors, and all arithmetic opera-
tions work on 32-bit operands. In some cases, it might be useful to hold intermediate
results in a wider length, across two registers, and utilize rounding at a chosen point
in the algorithm — the core idea of the aforementioned mixed-precision algorithms.
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In other cases, memory requirements have to be considered and a word length lower
than 32 bits chosen, in which case rounding is utilized again before writing the value
to memory.

Lastly, the terms accuracy and precision should be addressed here. In this thesis
we will usually refer to precision as being the number of bits in a numerical format

or the number of bits in a fractional part of the numerical format. On the other hand
accuracy is addressed after precision is defined, that is, in terms of numerical error
analysis, accuracy is how well does an algorithm utilize a given numerical precision

to represent some output when compared to some ideal algorithm using the same or

higher precision data type; in other words, how well does it set up the number of bits in
a data type to minimize the numerical error. It is worth commenting that definitions can
differ, depending on the context. Higham [23, p. 6], for example, defines precision as
the “accuracy with which basic arithmetic operations +,−,∗,/ are performed”. Note
that, in terms of neuromorphic computing, accuracy can also be used to discuss neural
network performance and this should not be confused with numerical accuracy.

1.4 Energy consumption and the role of accelerators

While biological neural networks run in real time irrespective of their scale, SNN sim-
ulation performance in a digital computer is directly related to the size and complexity
of the network. This is easy to see when imagining that each neuron is mapped into
Central Processing Unit (CPU) instructions — the more neurons one tries to update
in each timestep the more computation time is required. Neuron processing can be
spread across multiple CPUs, but there is always some level of sequential execution
(for example updating a single neuron) which cannot be parallelized and eventually is
a limiting part of the overall parallel system’s performance (Amdahl’s law). Similarly,
if each spike has the cost of a certain number of CPU instructions attached to it, scaling
the network without repartitioning where the neurons are laid out will result in more
spikes (instructions) arriving into CPUs.

As discussed by Jin [24], most of the methods to speed up simulations of neural
networks generally lie in two categories: 1) developing simpler neuron and synapse
models, and 2) increasing the performance of the simulation hardware; most effort
in the first category was placed in developing simpler neuron models. One of the
most biologically plausible neuron models is the Hodgkin-Huxley model, which takes
1200 arithmetic instructions per update [25]. Izhikevich [25] demonstrated increasing
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biological implausibility with decreasing neuron model complexity and cost in arith-
metic operations, eventually reaching a simple 5-arithmetic-operation Integrate-and-

Fire neuron model. The second category is usually a choice between a neuromorphic
analogue/digital hardware platform, a large-scale high-performance CPU or a Graph-
ics Processing Unit (GPU) clusters, or Field-Programmable Gate Array (FPGA)s, with
multiple choices of software simulators on each platform.

With the growing complexity of neuron and synaptic plasticity models, and new
information from neuroscience about the sparsity of networks and neuron fan-in/out,
machines such as SpiNNaker will need to meet increasing low energy and real-time
performance demands. The next major step is to investigate specialized compute en-
gines [26] to be placed next to the Processing Elements (PEs) inside SpiNNaker chips
to accelerate different parts of the neural network algorithms, most importantly, serial
parts of the simulation flow that cannot be parallelized by using more cores. Here ac-

celerated means computation not run in a general-purpose CPU but specifically cast
into an (algorithm-specific) hardware unit that runs more efficiently than the CPU (with
higher accuracy, lower latency and energy), but without compromising the flexibility
of the algorithms that can be executed (otherwise the accelerator risks becoming dep-
recated where users would start replacing it with software for programmability).

It is not always the case that high accuracy and a complex number representation
format such as floating point is required. Some studies are already being done in terms
of moving away from a CPU that computes everything to the last bit of accuracy [27],
and error tolerance of the applications, both at circuit level and algorithmic level, is
explored to minimize energy use [28]. On a digital machine with fixed-length instruc-
tions, such as SpiNNaker with a 32-bit datapath and registers, trading off accuracy for
energy is not easy to achieve. It might be possible to reduce accuracy by modifying
the algorithms, for example an iterative algorithm with controllable number of itera-
tions to run, that computes slightly inaccurate 32-bit results. However, the lowest level
operations such as× and + cannot be controlled for reduced accuracy — they are eval-
uated in the processors’ hardware components without the user control, and the actual
hardware component has the area and energy usage of a component which computes a
fully accurate result to a given precision.

Therefore, in SpiNNaker terms it is possible to trade off accuracy for speed and
energy mainly in two ways: SpiNNaker and SpiNNaker2 algorithmic arithmetic func-
tions can be controlled to use fewer atomic integer or floating-point operations, and
arithmetic accelerators for SpiNNaker2 can be built with accuracy control in them for
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providing an option for making trade-offs. But it is not possible to control the energy
used by the ARM processors’ multipliers, adders, and other basic functional units.

Another major contributor to energy usage in SpiNNaker is moving data from ex-
ternal memory into the processors, unpacking it, repacking it, and sending it back to
the memory. When a spike event arrives at the core, it needs to get all the information
about the synapses which is stored in an off-chip memory as it would not fit into the
limited space on the core. The data is fetched using a Direct-Memory-Access Con-
troller (DMA) call, and used to compute contributions of synapses to the neuron. Then
it is modified if plasticity is enabled in the simulation, and put back into the off-chip
memory using a DMA call again. The moving of data and unpacking and packing it
back into the form that they are stored in uses a lot of energy in the simulation and some
possibilities exist for accelerating this part of the SpiNNaker simulation algorithm. For
example, DMA could have some programmable support for unpacking streams of data
so that the processor would not need to do it using multiple shift and logical bit mask-
ing instructions. These types of accelerators are out of the scope of this work but are
worth noting.

1.5 Conclusion

This thesis explores the fixed-point arithmetic of SpiNNaker, and fixed- and floating-
point arithmetic, including hardware accelerators, of SpiNNaker2. To summarise the
previous sections, the main work will have the following constraints.

• SpiNNaker and SpiNNaker2 are digital neuromorphic computers where neural
models are cast into ARM instructions that use underlying full-precision arith-
metic hardware to evaluate mathematical equations.

• Both machines are experimental, fully programmable platforms as opposed to
analog neuromorphic machines with fixed neuron models. Neuron, synapse and
synaptic plasticity models are described using the ARM instruction set.

• The core building block of the SpiNNaker chip is the ARM968 integer processor,
whereas SpiNNaker2 is based on the ARM Cortex-M4F containing an FPU.

• The SpiNNaker2 FPU does not provide the user access to the intermediate values
in higher precision than single-precision floating point. Any operation rounds the
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intermediate values to floating-point using one of the rounding modes from the
IEEE 754 standard [22].

Working with these constraints, the main goal of this work is to address the arith-
metic of SpiNNaker to understand how accuracy-energy tradeoffs can be made in large-
scale simulations of SNNs. The main contributions are as follows.

• Techniques to improve the accuracy of neuron models on the current generation
SpiNNaker, when fixed-point arithmetic is used (Chapter 3).

• The design and evaluation of a stochastic rounding accelerator for SpiNNaker2,
supporting fixed-point and floating-point rounding with saturation in single cy-
cle plus two memory operations. Stochastic rounding is demonstrated to provide
substantial accuracy improvements in fixed-point neural ODE solvers on SpiN-
Naker (Chapter 4).

• The design and evaluation of an exponential and logarithm function accelerator
for SpiNNaker2, in fixed- and floating-point, with programmable accuracy for
energy-accuracy tradeoffs. The first version (fixed-point only) of this accelerator
was manufactured as part of a prototype SpiNNaker2 test chip (Chapter 5).

The advantages of SNNs are still debated in the neuromorphic community. It is
generally assumed that because the brain can perform much more substantial tasks
than any current machine learning algorithms, SNNs, that very closely resemble bio-
logical neural networks, will be the most popular approach in the future. In this work
this assumption is also followed and the question of SNN superiority over other ap-
proaches is not addressed. As a result, the thesis is written from a computer science
and engineering perspective, having in mind that any algorithms that are currently run
on neuromorphic machines are simplifications of some brain activities that are de-
scribed by neuroscience. The general strategy of the work is to survey the neuron and

synapse models available in computational neuroscience literature, focusing on math-

ematical detail and algorithms, and provide methods to improve numerical accuracy

as well as identify the parts to accelerate in hardware.





Chapter 2

Background

This chapter contributes two things to the thesis. First, it introduces definitions and

properties of fixed- and floating-point arithmetics, ways to measure accuracy of results

in each, and rounding modes that are explored in the thesis. The subject of digital

computer arithmetic is not covered extensively here and we refer the interested reader

to [16, 29, 30, 31, 32] for more details. Both numerical formats are used in Chap-

ters 3–5. The accuracy of the implemented functions (Sections 5.4.1.1–5.4.1.3) are

measured using Unit of Least Precision or Unit in the Last Place (ulp) that is dis-

cussed here. Also, various rounding methods defined in this chapter are a core part of

Chapters 3 and 4. Furthermore, carry-save adders, whose symbols are defined here,

are used in the exponential and logarithm function algorithms (Section 5.2.2).

Secondly, the chapter introduces an overview of state-of-the-art neuromorphic sim-

ulators (analogue, digital and software simulators on the conventional hardware) in

order to give a landscape of this field which forms a major part of the context of this

thesis. Only brief details of each simulator are given, focusing on the available neuron

and learning models, numerical precision, energy and computational performance.

A more detailed SpiNNaker hardware and software review is given, focusing on the

aspects and algorithms that provide background for the results in Chapter 3.

Some material in this chapter was reproduced from the material that was published

in the Philosophical Transactions of the Royal Society A journal [33].

2.1 Digital computer arithmetic

In this section some definitions and properties of fixed- and floating-point numerical
formats are provided.

29
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2.1.1 Fixed-point arithmetic

A generalized fixed-point number can be represented as shown in Figure 2.1. Define a
signed fixed-point number < s, i, p > and an unsigned fixed-point number < u, i, p >

of word length w (which usually is 8,16,32 or 64) bits where i denotes the number of
integer bits, p denotes the number of fractional bits and s is a binary value depending on
whether a specific number is signed or unsigned (where u means that there is no sign bit
and s means there is a sign bit, and then we have to use 2’s complement in interpreting
the numbers). p also tells us the precision of the representation. Given a signed fixed-
point number < s, i, p >, the range of representable values is [−2i, 2i−2−p]. Whereas,
given an unsigned fixed-point number < u, i, p >, the range of representable values is
[0, 2i−2−p].

.… …𝑠

𝑝

𝑤

𝑖

Figure 2.1: The general form of a fixed-point number that is made out of three parts:
the most significant bit which is a sign, an integer part with i bits, and a fractional part
with p bits. The word length is w = i+ p+1.

To measure the accuracy of a given fixed-point format (or more specifically some
function that works in this format and we want to know how well, how accurately, it
performs in a given precision), we define machine epsilon ε = 2−p (sometimes also
referred to as a value of Least Significant Bit (LSB)). Here ε gives the smallest positive
representable value in a given fixed-point format and therefore represents a gap or
a step between any two neighbouring values in the representable range. Note that
this gap is absolute across the representable range of values and is not scaled by the
exponent as in floating-point or similar representations. This requires us to consider
only absolute errors when measuring the accuracy of functions that are implemented
in fixed-point representation. Accuracy is sometimes also measured as LSB — a value
represented by the least significant bit in a fixed-point word, which is the same as
machine epsilon. Note that the maximum error of a fixed-point number, when round-
to-nearest is used in conversion, is ε

2 .

Lastly, it is worth noting how to convert a general fixed-point number into a deci-
mal number. Given a 2’s complement fixed-point number of radix 2 (a binary vector)
< s, i, p >: sIi−1Ii−2 · · · I0.F1F2 · · ·Fp, if the number is signed the decimal value is given
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Table 2.1: Minimum and maximum positive numbers of 32-bit fixed-point numerical
formats.

Property s16.15 u0.32 s0.31

Accuracy (abs.) 2−15 2−32 2−31

Min (exact) 2−15 2−32 2−31

Min (approx.) 0.0000305 2.32831×10−10 4.65661×10−10

Max (exact) 216−2−15 1−2−32 1−2−31

Max (approx.) 65535.999969 0.999999999767169 0.999999999534339

0 0.0000305176 0.00006103516-0.0000305176

𝜖

Figure 2.2: Values close to zero in the s16.15 representation.

0
0.000000000465661

0.000000000931322−0.000000000465661

𝜖

Figure 2.3: Values close to zero in the s0.31 representation.

by summing the non-zero elements multiplied by corresponding weights

value =
i−1

∑
k=0

Ik2k +
p

∑
j=1

Fj2− j− s2i. (2.1)

Otherwise, if the number is not signed (so bit s becomes integer bit Ii) the decimal
value is given by

value =
i

∑
k=0

Ik2k +
p

∑
j=1

Fj2− j. (2.2)

SpiNNaker software mostly uses two fixed-point formats standardized by the In-
ternational Organization for Standardization (ISO) 18073 [34] standard and available
in the GNU Compiler Collection (GCC): accum, which is < s,16,15 > and long fract

which is < s,0,31 > (further referred to without brackets, for example s16.15). Ta-
ble 2.1 shows some properties of various fixed-point formats. The values close to 0
for each format are shown in Figures 2.2 and 2.3. The s16.15 format has a range of
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×

=

Top part:

Bottom part:

≫

Figure 2.4: Example of the multiplication of two s16.15 variables with the binary point
after the 15th bit marked in the arguments and after the 30th bit in the long answer. The
shaded part in the long answer is a 32-bit result that has to be extracted, discarding the
bottom and top bits.

representable values of

[−216 =−65536, 216−2−15 = 65535.99996948...],

with the gap between neighbouring values of εs16.15 = 2−15 = 0.000030517578125.
The s0.31 format has a range of

[−1, 1−2−31 = 0.99999999953433...],

with the gap of εs0.31 = 2−31 = 0.00000000046566... between neighbouring values.
Based on the values of machine epsilon, long fract is a more precise fixed-point data
type. However, long fract has a very small range of representable values compared to
accum. Which format should be used depends on the application requirements, such as
the required precision and the bounds of all variables. Sometimes intermediate values
can be held in long fract as long as possible and only rounded into accum when it is
known that certain operations will cause long fract to overflow or that the subsequent
algorithmic steps require an input number to be an accum.

The three main arithmetic operations on fixed-point numbers are of interest:

• Addition: < s, i, p >+< s, i, p >=< s, i, p >,

• Subtraction: < s, i, p >−< s, i, p >=< s, i, p >, and

• Multiplication: < s, ia, pa >×< s, ib, pb >=< s, ia + ib, pa + pb >.
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Note that +,− and× denote integer operations available in most processors’ arith-
metic logic units (ALU), including the ARM968. Therefore, for addition and subtrac-
tion, no special steps are required and these operations are exact if there is no under-
flow or overflow. However, for multiplication, if the operands a and b have the word
lengths wa and wb, then the result will have the word length of wa +wb−1. Therefore
after the integer multiplication we have to shift the result right to convert it to the same
fixed-point representation as the operands (the example in Figure 2.4 shows this for the
accum format). This is done because subsequent addition/subtraction operations need
the inputs to be in accum, or the result from multiplication is an input into another mul-
tiplication which, if not rounded, would require a 64-bit multiplication instruction (not
always available) and yield results longer than 64 bits, resulting in bit growth. Support
for storing and operating on such longer data types is not widely available without
extended precision libraries such as GNU MPFR [35]. This shifting in the multiplica-
tion operation results in loss of precision and therefore an appropriate rounding step
can be done to minimize the error. Similar issue arises when two numbers in different
fixed-point formats are added: if the result from the addition needs to be in the format
of the less precise fixed-point input (which it should, otherwise overflow is likely —
the input argument with more integer bits can already have a magnitude which will
overflow the other argument’s format), the bottom bits of the more precise input will
not be preserved and have to be rounded.

2.1.2 Floating-point arithmetic

The IEEE 754-2019 standard [22] defines a radix-2 (binary) normalized single-precision
floating-point (called binary32) number with a sign bit S, 8-bit exponent E and a 23-bit
integer significand T to have the numerical value (slightly modified from [32, p. 51])

(−1S)×2E−127× (1+T ·2−23), (2.3)

whereas a double-precision (binary64) number with a sign bit S, 11-bit exponent and
a 53-bit integer significand T has the numerical value

(−1S)×2E−1023× (1+T ·2−52). (2.4)

Table 2.2 shows the minimum and maximum values of various floating-point nu-
merical formats (including bfloat16 [36] which is a floating-point non-IEEE format
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equivalent to binary32 in structure but without 16 bottom bits of the significand). As
discussed previously, fixed-point formats have absolute accuracy denoted by the cor-
responding machine epsilon, which means that any two neighbouring numbers in the
representable range have a fixed gap between them. On the other hand, floating-point
formats have accuracy relative to the exponent, which means that the gap between any
two neighbouring numbers (or a real value of the least significant bit) is relative to the
exponent that those numbers have — machine epsilon multiplied by 2 to the power of
the biased exponent.

This can be imagined by a long axis which contains markers for all possible floating-
point numbers (Figure 2.5). Such an axis would have very small gaps between the num-
bers close to zero and increasingly larger gaps as numbers get further away from zero
towards ±∞. Whereas such an axis for fixed-point would look like all gaps between
the markers, where the representable numbers are placed, are all of the same length.
For example, the next number after 0.5(E = 126) in binary32 floating-point arithmetic
is 0.5+2−23×2−1, while the next number after 1.0(E = 127) is 1+2−23×20. Due to
this, the accuracy of floating-point numbers is measured relative to the exponent (more
on this in Section 2.1.3).

0

+∞

+∞−∞

−∞

Figure 2.5: A demonstrative example of the difference between the axis of real num-
bers represented in floating- and fixed-point (bottom) arithmetics.

Due to these features of floating-point arithmetic, it depends on the application
which data types will provide more accuracy overall. For example, if the applica-
tion works with positive numbers below 1 only, u0.32 is a more accurate data type
as it gives smaller steps between adjacent numbers (2−32) than the binary32 float-
ing point (2−23). On the other hand, if the application works with numbers that are
as small as 0.001953125 (E = 117, which gives a gap between numbers of 2−32), bi-
nary32 floating-point representation becomes as accurate as u0.32 and increasingly
more accurate as the numbers decrease beyond that point, eventually reaching the ac-
curacy of 2−126 (normalized) and 2−126−23 (subnormal) near zero.
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Table 2.2: Minimum and maximum positive numbers of floating-point formats. Small-
est exact subnormals (sn) are shown in brackets.

Property binary64 binary32 bfloat16

Accuracy (rel.) 2−52 2−23 2−7

Min (exact) 2−1022(sn : 2−1074) 2−126(sn : 2−149) 2−126(sn : 2−133)
Min (approx.) 2.225×10−308 1.175×10−38 1.175×10−38

Max (exact) (2−2−52)×21023 (2−2−23)×2127 (2−2−7)×2127

Max (approx.) 1.798×10308 3.403×1038 3.39×1038

2.1.3 Measuring accuracy: machine epsilon (LSB) and unit of least
precision (ulp)

To measure the accuracy of functions implemented in fixed- and floating-point arith-
metics we have to consider what is the best that the function can do given the numerical
format and the number of bits of precision. Any perfectly performing function can only
give answers from the set of numbers that are available in the numerical format of the
outputs, and we should choose a number that is as close as possible to an exact answer,
without knowing it. Measuring errors is simpler in fixed-point arithmetic, as the set of
numbers that it can represent is uniformly distributed in the available dynamic range.
So we only have to consider how many steps, that is machine epsilons ε = 2−p, the
answer from a given function is from the exact answer of the same function with the
same inputs. This measure is sometimes also called LSB, for a value represented by

the least significant bit. For simplicity, in this thesis this measurement will be called
ulp as used in floating-point arithmetic.

In floating-point arithmetic it is not as straightforward, as the set of available num-
bers is not uniformly distributed. Smaller numbers are separated by smaller steps and
larger numbers are separated by larger steps. Due to this, reporting how many machine
epsilons we are away from the exact mathematical answer will not be meaningful any-
more without taking into account where in the dynamic range the answer is in a given
floating-point format. We need to use a measurement that tells us how many steps

away we are from the exact answer — one step away will have a meaning across the
full dynamic range even though one step can be a very large number at the edges of
the dynamic range and very small fractional number near 0.

The ulp is one such measure. Multiple definitions of ulp for a general floating-point
number are discussed by Muller [37]. For the purposes of this thesis the definition
slightly rephrased from William Kahan’s [38] definition will be used: ulp(x), where
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x is some exact number of which approximation in floating point we are considering,
is a magnitude of the gap between the finite two nearest floating-point numbers on

both sides of x. However, in most cases we do not need to measure the magnitude
of the gaps but just want talk about how many ulps one or the other number is away
from some exact value (the real size can be reconstructed for a specific situation if
needed for understanding numerical error). Therefore there are two uses of ulp, one
as a function ulp(x) that returns the magnitude of the gap where x lies and one as a
quantity for error measurement: 0.5ulp, 1ulp, 2ulps and so on. Note that for numbers
that are powers of 2, ulp magnitudes are different on the left and on the right of those
numbers due to the exponent change; this is addressed in more detail by Muller [37].
Some interesting scenarios are demonstrated in Figure 2.6 for visualization. Also note
that the maximum error of a perfect implementation of some function with correct
rounding is 0.5ulp, which means that we always calculate the floating-point number
nearest to the theoretical exact value.

1
1 + 2

−231 − 2
−24

�
A BC

ulp(�) = 2
−23

8388608 83886098388607.5

�

ulp(�) = 1

−∞

−∞ +∞

+∞

Figure 2.6: Some interesting numbers from the binary32 floating-point representation.
Top: some number x is not representable in floating-point exactly, so either 1 has
to be returned or the next representable number A = 1+ 2−23. If 1 is returned, the
accuracy is within 0.5ulp, if one of these is returned, we say that the accuracy is within
1ulp. If B is returned, accuracy is within 3ulps; if C is returned, then accuracy is
7ulps. Bottom: 223 = 8388608 is the first number going from 0 to +∞ that loses the
fractional part. Notice that the gaps between the floating-point numbers after it are
equal to 1. However, when some real value y, that cannot be represented in floating-
point, is desired and 8388608 or 8388609 is returned, we still say that we are within
1ulp and therefore very accurate, as accurate as in the top scenario, even though the
absolute error is much larger. As long as we are not introducing “GULP” errors (Giga-
Ulp) (see the post by Kahan [38] for history) we are fine.
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2.1.4 Rounding

Anytime we convert a number to a lower precision number, we have to consider round-
ing instead of throwing away the bottom bits. Here two known rounding approaches
are described, for simplicity using fixed-point numbers: Round-to-Nearest (RN) and
Stochastic Rounding (SR) [39, 40]; the latter is named stochastic due to the require-
ment for random numbers. Given a real number x, an output fixed-point format to
round the value to < s, i, p > with ε = 2−p and defining bxc as the truncation opera-
tion (cancelling a number of bottom bits and leaving p fractional bits) which returns a
number in < s, i, p > format less than or equal to x, RN is defined as

RN(x, < s, i, p >) =

{
bxc if bxc ≤ x < bxc+ ε

2 ,

bxc+ ε if bxc+ ε

2 ≤ x < bxc+ ε.
(2.5)

Note that for numerical error reduction in Chapter 3, the choice in this work was to
implement round up on the tie x = bxc+ ε

2 ; this was done because it results in a simple
rounding routine that requires checking only the Most Significant Bit (MSB) of the
truncated part to make a decision to round up or down. Other tie breaking rules such
as round to even can sometimes yield better results, but a cheaper tie-breaking rule in
this work is preferred.

Another rounding routine used in this thesis is stochastic rounding. It is useful
to reduce the error in some applications, as is shown in Chapter 4, since it takes into
account all of the round-off bits instead of only a single bit as in RN and rounds prob-
abilistically in such a way that over many roundings the expected error is zero (due
to errors with different signs cancelling out when added). Instead of always round-
ing to the nearest number as in RN, the decision about which way to round is non-
deterministic and the probability of rounding up is proportional to the value in the
round-off bits (called a residual here). Given all the values as in RN and, additionally,
given a random value P ∈ [0, 1), drawn from a uniform random number generator, SR
is implemented as (similarly to [39])

SR(x, < s, i, p >) =

{
bxc if P≥ x−bxc

ε
,

bxc+ ε if P < x−bxc
ε

.
(2.6)

For efficiency and reproducibility it is expected that P is generated with a Psuedo-
random Number Generator (PRNG).

Lastly, the cases without rounding (bit truncation) will be denoted as Round Down
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(RD). For floating-point numbers it is very similar, as it comprises a significand which
is essentially a fixed-point value scaled by 2exponent . However, note that in 2’s com-
plement fixed-point representation bit truncation results in RD, while in floating-point
arithmetic, which does not use 2’s complement, bit truncation results in Round-towards-
Zero (RZ).

2.1.5 Carry-save adders

In Chapter 5, algorithms for exponential and logarithm are implemented using carry-
save number representation. In Figure 2.7A, a symbol for a carry-save adder is shown
(also called 3-to-2 compressor, as labelled). Figure 2.7B demonstrates a carry-save
adder which can add four binary vectors (which could be two carry-save numbers)
and produce a carry-save number — this is called a 4-to-2 compressor. Figure 2.7C
demonstrates a symbol for it and note that it has two bits each for carry in and carry
out. A lot of textbooks do not consider carry in signal in carry-save adders, but it is
sometimes useful to add a bit in, for example when we want to perform x+y−z, which
requires inverting z in 2’s complement.1
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Figure 2.7: A: Bit-vector level carry-save adder. B: 4:2 carry-save adder built from
two 3:2 carry-save adders. C: Bit-vector level 4:2 carry-save adder.

Some issues with the right shifts of the carry-save numbers were relatively recently
discovered [41]. However, as discussed by the authors, the problems do not occur in
most of the algorithms and hardware implementations in modern processors and this

1Even more useful is doing x+ y− (w+ z) for subtracting a carry-save number from another carry-
save number. In this case, because we have two binary vectors w and z which we want to sign invert in
2’s complement, we need to bit-invert both vectors and add 2 to the total, which can be done by using
the two carry inputs in the 4-to-2 compressor.



2.2. ANALOGUE NEUROMORPHIC COMPUTERS 39

issue did not appear in any of the algorithms used in Chapter 5 even though right shifts
of carry-save numbers are performed.

2.2 Analogue neuromorphic computers

Analogue neuromorphic processors implement neuron, synapse and learning models
using physical components that can approximate their behaviour in integrated circuits
(ICs) [3]. Three analogue processors are discussed here: BrainScaleS (Heidelberg),
BrainScaleS 2 (Heidelberg) and DYNAPs (ETH Zurich).

The BrainScaleS is based on the direct translation of neuron and synapse model
equations to electronic circuits that have measurable quantities representing different
variables. Time is scaled in BrainScaleS by a factor of 104 of real-time, which means
that equations are solved 10 thousand times faster than in biology and this translates
into the firing times and rates of the neuron. The neuron model used in BrainScaleS is
AdEx [42, 43] which is implemented with 23 analogue parameters for configuration.
The neuron model is solved in continuous time rather than in the discrete time steps
like in a digital neuromorphic chips. Each neuron can receive up to 16000 incoming
synapses [44]. The chip also contains a substantial digital component, namely an in-
frastructure for propagating neuron action potentials, and control of weight updates
for implementing STDP [45]. Chips are interconnected using wafer-scale integration,
which means that the chips manufactured on silicon wafers are not used separately
but left on the wafer with some interconnection between the chips added by post-
processing the wafer.

The latest version of the BrainScaleS has a general purpose digital processor em-
bedded into the chip, for implementing programmable STDP rules [12, 46]. A proto-
type BrainScaleS2 chip was recently used by Wunderlich et al. [47] for implementing
a Pong playing agent in spiking neural networks. It is running with a speedup of 103

relative to biological time and contains an analogue part for neuron and synapse mod-
els and a digital processor running at 98 MHz interfacing with the analogue part for
programmable plasticity rules. While the digital part is running relatively slowly, the
speed-up of the analogue part which implements neurons and synapses allowed Wun-
derlich et al. [47] to draw the following speed and power figures compared with the
simulation running on a general purpose Intel CPU: 50000 network learning iterations
took 25 s on BrainScaleS2 versus 40 min on a conventional Intel processor and used
at least three orders of magnitude less energy. While the network that was simulated
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is quite small (32 neurons and 1024 synapses), these speed and energy numbers show
what will be possible in the future generations of analogue hardware; the authors men-
tion plans to build a new prototype chip with 512 neurons and 130k synapses which
might be used for more complex networks. At the moment, the main challenge of
these platforms is that every synapse and neuron has to be implemented physically
and therefore the size of networks is limited to the size of system built. Furthermore,
since neuron models and synapses are fixed in hardware, the simulations are less cus-
tomizable than the simulations on a general purpose CPU or a digital neuromorphic
platform.

Another notable neuromorphic processor that is based on analogue circuits is DY-

NAPs [48].

2.3 Digital neuromorphic computers

Digital neuromorphic chips such as SpiNNaker implement classical von Neumann pro-
cessors, containing adders, multipliers, program counters and other usual components,
communicating with instruction and data memory and in some, accelerators to speed
up the simulations of neural networks. Usually the processors are general purpose, but
have an efficient interconnect (using routers and network-on-chip, NoC) and software
optimized for spiking neural network (event-driven) algorithms. Therefore, the main
components that can be called neuromorphic are interconnect fabric to transport spike
packets and software, with the processor hardware being quite a standard multi-core
architecture. Other digital neuromorphic platforms, such as TrueNorth or Intel Loihi

have digital circuits to do specific tasks with minimum programmability due to the lack
of the general purpose CPU. In this section provided are brief overviews of Intel Loihi,
True North, SpiNNaker, and SpiNNaker2 digital neuromorphic platforms.

2.3.1 Intel Loihi

The Intel Loihi digital neuromorphic chip contains 130000 neurons, 130M synapses
simulated in real-time across 128 digital neuromorphic cores and three standard x86
cores [13]. The inclusion of x86 cores seems to be for routing packets and for modify-
ing the synaptic parameters. In addition to a digital on-chip Leaky Integrate and Fire
(LIF) neuron, Loihi includes: pre- and post-synaptic spike traces with configurable
time constants for learning rules; two additional state variables per synapse apart from
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weight and delay, which can be used for reinforcement learning for example; reward
traces that correspond to special reward spikes that can be sent to sets of synapses;
pseudo-random number generators; configurable delays, and multi-compartment neu-
ron support (dendritic trees). Synaptic weights are 9 bits and traces 7 bits, which
means that Loihi is a highly reduced-precision computer and there is some indication
in Davies et al. [13] that it is a custom floating-point format. Davies et al. [13] also
mention that stochastic rounding (more in Chapter 4) is used when computing spiking
history traces — likely to avoid large errors due to reduced 7-bit precision. Further-
more, instead of globally distributed periodic timer ticks to update all the neurons’
states in a network, Loihi uses a handshaking mechanism between the cores to decide
when it is safe to proceed to the next time step.

2.3.2 TrueNorth

IBM’s TrueNorth is another digital chip for spiking neural networks [49, 50]. It con-
tains 4096 cores with each core capable of simulating 256 integrate-and-fire neurons
with 256 synapses each and requires only 63 mW of power. Differently from SpiN-
Naker and Intel Loihi (which is not based on a general purpose CPU but still has cus-
tomizable plasticity rules), TrueNorth implements digital circuits optimized to repli-
cate specific neuron and synapse behaviours.

2.3.3 SpiNNaker

SpiNNaker can be most clearly explained by following the bottom-up hierarchy: SpiN-
Naker cores and chips, large SpiNNaker systems (with interconnected chips) and SpiN-
Naker software. The SpiNNaker chip is presented next.

2.3.3.1 SpiNNaker chip

The SpiNNaker chip (Figure 2.8) is the main building component of a million-core
computing cluster for simulating large-scale SNNs. The SpiNNaker chip comprises
18 ARM968 processors as well as a 128 MB block of shared off-chip memory. Typ-
ically each ARM968 in the SpiNNaker chip will be allocated up to 255 neurons so a
single chip can model approximately 4000, where the exact number depends on the
complexity of the simulation models. Each core has 64 kB of data storage memory
called Data Tightly-Coupled Memory (DTCM) and also 32 kB of instruction mem-
ory, called Instruction Tightly-Coupled Memory (ITCM). The executable program is
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Figure 2.8: Image of the SpiNNaker chip [6].

constructed according to the high level description provided by the user, which takes
into account things such as neuron models and learning rule types and linked together
with the SpiNNaker low-level libraries. The compiled code is then downloaded to the
ITCM and any data structures that are used while an application is running are stored
in the DTCM. A DMA controller is used to send data to the off-chip memory or copy
data into the DTCM from the off-chip memory. It functions in parallel with the pro-
cessor and is the fastest method to copy synaptic data into the DTCM when spikes
are received. Each processor runs at a nominal speed of 200MHz and works in an
event-driven fashion, with periodic timer events causing neuron updates on the chip
and spike events to process synaptic inputs.

In terms of SNN simulation performance, it is estimated that 5M connections/s per
core (where connection is one synaptic signal) can be processed in real time [7] if there
is no plasticity and 1M connections/s per core if there is plasticity. However, these
numbers are only rough estimates and the real performance is always dependent on
what kind of activities the model has to perform on each spike input (for example, how
much computation is required for plasticity on each spike arrival) and what is the rate of
inputs. Finally, it is worth reiterating that ARM968 is an integer processor and does not
contain floating-point hardware support or dividers or similar complicated arithmetic



2.3. DIGITAL NEUROMORPHIC COMPUTERS 43

circuits. Due to this, all of the neuron and synapse model numerical algorithms are run
in fixed-point arithmetic using the integer arithmetic hardware components.

2.3.3.2 Large systems

SpiNNaker (now referring to the machine) is a large collection of low power computa-
tional nodes that are able to send and receive signals (similar to neuronal spikes in the
brain) to/from any other node in the network, and can be programmed to run code upon
receiving each spike to model the approximate behaviour of biological neurons and the
synapses that connect them. Two main parts are relevant at this level: the network-on-
chip (NoC) and the router. Each core assembles SpiNNaker packets of which there
are multiple types. It is out of scope to discuss the SpiNNaker packet types, but the
most common one is a multicast packet. The main information in such a packet is a
32-bit key which is first used in the router of the chip in which the sender resides, and
then passed down to the network either inside the chip (to one or many of the 18 cores
which might be receivers) and to one or many of the 6 chip links to neighbouring chips.
Any chips where the packet arrives must have a routing table stored inside the router
and if a packet arrives the steps of routing are repeated in those chips by using the key
again [51].

Using this mechanism, a large system of 1 million cores was recently built and all
the cores successfully turned on. The machine can now be accessed free, through var-
ious methods provided by the Human Brain Project where people can submit spiking
neural network scripts written in PyNN (see below) for simulation on the machine.

2.3.3.3 SpiNNaker software

The usual routine of simulating something on SpiNNaker is as follows. The high-
est level description of a spiking neural network is made using a Python-based lan-
guage PyNN [52]. The neural network description is then interpreted by Python and
PyNN and passed into the SpiNNaker toolchain for distributing it across some number
of ARM cores. Multiple precompiled binaries for combinations of different neuron,
synapse and plasticity models should be in place when this step is happening, since
the toolchain interprets the network description and selects the appropriate binaries to
copy to each core.

Neural simulations on SpiNNaker undertake two main activities: neural process-

ing and synapse processing. Neural processing involves calculating voltage potentials
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that determine when neurons fire, given any inputs that have accumulated in the in-
put buffers. Synapse processing refers to simulating each signal travelling through
synapses after neurons fire. Naturally, as there are around 100 billion neurons in
the brain and approximately 10000× more synapses, synapse processing occupies the
largest amount of SpiNNaker processing time and therefore it is the part of simulation
which should be optimised the most.

The software can be most conveniently described in this order: PyNN language,
neuron models, synapses, plasticity, synapse processing routine and finally neural pro-
cessing routine.

PyNN neural network description language PyNN is a simulator-independent SNN
description language [52]. The main purpose is to be able to have a single notation for
constructing SNNs that can be run on multiple different simulators (traditional soft-
ware on High-Performance Computing (HPC) platforms or neuromorphic simulators).
SpiNNaker supports an interface between SpiNNaker and PyNN that enables users to
run PyNN scripts without requiring any change when moving from another simulator.

Neuron models Two neuron models are supported on SpiNNaker: leaky integrate-
and-fire neuron (LIF) and Izhikevich neuron (variations of these are also supported,
for example current or conductance based versions). Izhikevich neuron is discussed in
Section 3.1. The code for advancing the differential equation of each in discrete time
is provided in the SpiNNaker toolchain [53] and the time step value can be configured
by the simulation settings.

Synapses Another element of the SNN simulation is synaptic data, which includes
the parameters of each synapse: weight, delay and type. It also includes the post-
synaptic neuron ID of the connected synapse. Synaptic data occupies a significant
amount of space, therefore is stored in the off-chip memory and copied in chunks into
local memory only when the post-synaptic neuron core receives a spike.

Plasticity Synaptic plasticity describes the change of synapses according to various
factors, such as spike timing. Hence, when simulating networks which include plas-
ticity, synapses change their weights and therefore require synaptic data to be updated
in the off-chip memory. Plasticity is a critical part of the simulation and is usually a
major limiting factor when enabled. This is because for each spike that arrives, we not
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Algorithm 1 Pseudo algorithm of STDP (reproduced from Knight et al. [9])
function PROCESSROW(t)

for all j in postSynapticNeurons do
history← getHistoryEntries( j, told, t)

for all (t j, s j) in history do
wi j← applyPostSpike(wi j, t j, told, si)

(t j, y j)← getLastHistoryEntry(t)
wi j← applyPreSpike(wi j, t, t j, s j)
addWeightToRingBuffer(wi j, j)

si← addPreSpike(si, t, told)
told ← t

only have to go through the synaptic data and add the weights into the neuron buffers,
but also go though the spiking history of each post-synaptic neuron, apply correlation
of each pre- and post-synaptic spike and evaluate the new weight — a three way loop
going through each input spike, each post-synaptic neuron and each spike time of the
neuron.

Various attempts were made to improve the performance of the plasticity algorithm
on SpiNNaker. Diehl and Cook [54] presented an extensive analysis of the problems
and an alternative STDP simulation software framework for SpiNNaker which im-
proved performance. Furthermore, more recently Knight and Furber [55] presented
a complete re-configuration of how a PyNN neural description is mapped onto SpiN-
Naker with separate cores allocated for synapses and neurons which allowed large-
scale simulations inspired by the structure and plasticity in the neocortex to be demon-
strated by Knight [56]. However, all software optimisations meet hardware limits
(mainly of an ARM968) quite quickly, so optimising hardware specifically for these
learning algorithms in SpiNNaker2 will allow to improve current models further.

STDP is simulated on SpiNNaker using a trace-based approach [57, 58] where
each synapse records pre- and post-synaptic neural activity into local trace variables
(si and s j respectively) with the following dynamics:

ds
dt

=− s
τ
+∑

t f

δ(t− t f ), (2.7)

where spikes at times t f , described by Dirac delta function δ(t− t f ), increase the value
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of the trace which decays exponentially with a time constant τ. The time constants of
these traces are typically set to match the shape of the desired STDP function.

The processing of a single synaptic row is implemented using the PROCESSROW()
function shown in Algorithm 1 which is called when a pre-synaptic spike arrives and
the corresponding synaptic matrix row has been transferred into local memory. This
algorithm applies all of the STDP updates that have occurred since the last pre-synaptic
spike was received. For more complex rules this double loop can also be extended, for
example, to go through some other spiking history apart from post-synaptic neuron,
such as dopaminergic signal arrival times (this is discussed in Section 3.3).

Synapse processing When a core receives a multicast packet it sets up a DMA to
copy some synaptic data into the local memory. When the DMA copying completes,
a loop starts going through each plastic synapse first, calling the plasticity algorithm
discussed above. When that is finished, non-plastic synapse update happens, going
through each synapse in the synaptic row, indexing the correct ring buffer2 entry using
the synapse delay, synapse type and neuron ID, and adding the weight into it.

Neural processing routine Neural processing is done on periodic timer interrupts
and involves taking the excitatory and inhibitory input from synapses, decaying and
adding it, in the form of a current, to the corresponding neurons. It is then determined
whether the neuron should spike or not. If it spikes, it will generate a spike packet
which will propagate across the system nodes the control of the routers and eventually
raise an interrupt on all of the destination cores, which will trigger synapse processing
on those cores.

These are main parts of SpiNNaker (and potentially the upcoming SpiNNaker2)
software. For more details refer to [5, 51, 53].

2.3.4 SpiNNaker2

A second generation chip named SpiNNaker2 is currently in development phase. The
first prototype chips, codenamed Santos, have already been manufactured and used for
various experiments [59, 60, 61]. A second prototype chip, codenamed JIB1, is being

2The ring buffer is the data structure that is used to model spike arrival with delays on the post-
synaptic neuron processor. Each ARM968 on SpiNNaker has a collection of ring buffers which store
the synaptic contributions for specific times in the future. Ring buffers are read periodically, each time
taking an element indexed by the current time value of the running simulation. This is required because
biological delays are longer than signal travel time through SpiNNaker’s interconnect fabric.
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tested at the time of writing and the design of the third prototype JIB2 is finished. After
this, the final SpiNNaker2 chip will be finished.

The main part of the SpiNNaker2 chip is more than a hundred ARM Cortex-M4F
PEs. The ARM M4F is an upgrade from the older ARM968 model as it contains a
2-12 cycle integer divider, a binary32 FPU, and a more advanced than ARM968 Dig-
ital Signal Processing (DSP) instruction set [62]. Each PE has some local memory
which will be split between code and data as in the current version of SpiNNaker. An
off-chip memory is shared among all the cores as well. Each PE is equipped with a
DMA controller to copy data to and from the off-chip memory to the PE and each
chip has a router used to send spike packets from any core to any other core in the
system. SpiNNaker2 will also contain functionality for dynamic power management
as described by Höppner et al. [61]. Power management is done by software control to
switch between power levels that are determined by voltage and clock frequency, and
the change between two power level domains only takes approximately 100 ns. Pro-
cessors can therefore be programmed to do application-specific power management,
for example based on the spiking activity, without much overhead.

The SpiNNaker2 chip will also have memory sharing between subsets of PEs which
will give it more customization possibilities for cases where a large fast memory space
is required [63]. Lastly, various accelerators are being added to each PE: matrix mul-
tiplication, exponential and logarithm functions (this thesis), rounding support with
customizable bit position (this thesis) and random and pseudo-random number gener-
ators; the accelerators will help increase the speed of certain algorithms and decrease
energy consumption compared to simulations purely done in ARM M4F software. Ini-
tial results on the Santos prototype chip reported by Yan et al. [21] in implementing
a reward-modulated plasticity rule show a more than 2× decrease in clock cycles re-
quired for each plasticity update, more than 2× increase in the number of synapses
that can be simulated per core, and 41 % energy reduction due to use of accelerators in
that particular plasticity rule compared to the same simulation done without the accel-
erators. Similar speed and energy improvements were reported by Liu et al. [64] when
running deep learning algorithms on Santos.

2.4 Software neural simulators

The most accessible options are various SNN simulators available that can run on
standard processors, GPUs or FPGAs.
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NEST [65] is a software package for simulating large-scale SNNs on a conventional
cluster of processors. It supports various neuron models, including such complex neu-
ron models as Hodgkin-Huxley [66]. Furthermore, two-factor STDP is supported as
described by Morrison et al. [67] and there were some experiments shown with three-
factor, neuromodulated STDP by Potjans et al. [68].

GeNN [69] is a software framework which allows users to generate spiking neu-
ral network simulation code optimized for running on GPUs. Using this framework,
Yavuz et al. [69] reported a 200-fold speed increase compared to a conventional CPU
running a network with 1M Hodgkin-Huxley neurons. Furthermore, speed-up and
energy reduction in simulating a cortical microcircuit model with approximately 80k
neurons was explored by Knight and Nowotny [70] and it was demonstrated that in this
particular network, when simulated on a single NVIDIA Tesla V100, it outperformed
current NEST and neuromorphic simulators both in speed and energy, despite simulat-
ing it in floating-point arithmetic. Further improvements could be gained, as noted by
the authors, by switching to GPUs with low-precision fixed-point arithmetic and using
mixed-precision to alleviate some rounding errors.

Some experiments simulating spiking neural networks on FPGAs have also been
performed. Pani et al. [71] demonstrated a simulation of 1440 Izhikevich neuron mod-
els on a Xilinx Virtex 6 FPGA device. This has an advantage against other solutions in
that neuron models and possibly plasticity rules can be configured by the users in hard-
ware which allows both better speed than software approaches, and better flexibility
than analogue approaches.

2.5 Conclusion

Floating-point has dominated computer arithmetic for multiple decades and the prop-
erties and pitfalls of this data type are now very well known. Now reduced precision
fixed-point arithmetic is making a come back, with the need to make machine learn-
ing hardware more efficient and the observation that most of the algorithms there do
well with small numbers of bits interpreted as fixed-point numbers. Latest high perfor-
mance computers are even adding 8 and 16-bit hardware units for performing integer
arithmetic (one example is Fukagu supercomputer). Various novel numerical formats
are also explored, such as posit [72, 73] or bfloat16 with hardware support planned by
Intel [36]. In the rest of this thesis both fixed- and floating-point formats for various
software and hardware parts of SpiNNaker and SpiNNaker2 will be considered.
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Various approaches are available for simulating spiking neural networks: analogue,
digital, software (CPUs or GPUs) and FPGAs. Depending on what is required from
programmability, complexity of neuron and plasticity models, size of networks, en-
ergy and real-time run time constraints, a choice has to be made as to what platform
modellers should use for their research. This chapter has shown a landscape of dif-
ferent neural simulation platforms, with a special emphasis given to SpiNNaker and
SpiNNaker2 that are subject of this thesis.

The next chapter deals with some numerical accuracy issues on current version of
SpiNNaker where various methods are demonstrated for improvements at arithmetic
level.





Chapter 3

Neuron and Plasticity Models in
Fixed-Point Arithmetic on SpiNNaker

Improvements at software level on the current version of the SpiNNaker chip are ex-

plored in this chapter. First, various numerical issues, previously reported in the im-

plementation of the Izhikevich neuron model in fixed-point arithmetic, are replicated

using the default SpiNNaker software. Then, three different ways to improve the nu-

merical accuracy are demonstrated: rounding of constants, mixed-format multipliers,

and rounding of multiplication results (the first two methods do not affect the speed

of the neuron model). In each step, a particular neuron simulation experiment used

for generating the original results is rerun and any improvements to the accuracy are

analysed. Furthermore, in this section accuracy improvements to the exponential de-

cay on the current generation SpiNNaker chip are shown, which can also be applied

to the hardware accelerator of the first SpiNNaker2 prototype, because the method re-

quires only software level modifications. Finally, this chapter includes a new model of

three-factor STDP with performance and accuracy discussion.

Some sections in this chapter are reproduced from the material that was published

in the Frontiers in Neuroscience journal [11] and the proceedings of the 27th IEEE

symposium on computer arithmetic [74].

3.1 Numerical accuracy of the Izhikevich neuron model

One of the neuron models widely used on SpiNNaker is the Izhikevich neuron model
[75]. This neuron model can be configured to exhibit a diverse family of spiking pat-
terns. It is widely considered a good trade-off between biological plausibility and

51



52 CHAPTER 3. NEURON AND PLASTICITY MODELS

computational efficiency.

The neuron model is described by the following two-dimensional system of ODEs:

dV
dt

= 0.04V 2 +5V +140−U + I(t),

dU
dt

= a(bV −U),

(3.1)

where V (initially set V =Vinit) represents a neuron’s membrane potential, U (initially
set U = Uinit) represents a membrane recovery variable providing negative feedback
to V [75] and I includes synaptic or injected current. If V ≥ 30mV, it emits a spike
at which point V = c and U = U + d. Parameters a, b, c, and d can be configured to
achieve specific spiking behaviours under different stimulation conditions [75].

The ODE system in (3.1) does not have a known analytical solution and therefore
requires a numerical integration algorithm. On SpiNNaker, this model is solved using
the second order Runge-Kutta (RK) Midpoint ODE solver and, due to the lack of the
FPU, this is computed in fixed-point arithmetic [53], using only s16.15 fixed-point data
type for all the variables, constants and intermediate results.

Various sources of error are introduced in this solution, one of which is rounding
error that is of interest to explore. The first impression is that rounding error must be
much lower than the error of an ODE solver, however, the results in this section show
that this is not the case here. First of all, there are issues in the GCC implementation
of fixed-point arithmetic [74] such as lack of rounding of decimal constants. Also,
various other techniques such as mixed-precision arithmetic for intermediate results
are also shown to reduce the overall rounding error.

3.1.1 Previous work

There are three main published studies exploring the accuracy of the Izhikevich neuron
model with fixed-point arithmetic on SpiNNaker. Jin et al. [76] explored this using a
basic Euler method for solving the Izhikevich ODE and evaluated the accuracy using
spike counts without investigating errors in spike timing. Later, a set of ODE solvers
in the context of SpiNNaker were investigated by Hopkins and Furber [14] and, by
evaluating speed and spike timing errors, RK2 Midpoint was chosen as a good tradeoff
between accuracy and computational cost for a default SpiNNaker software implemen-
tation [53].

In the solution by Hopkins and Furber [14], the ODE solver which updates the
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neuron model for a given time step ∆t = h and input current It+h is as follows:

θ = 140+ It+h−Ut ,

α = θ+(5+0.04Vt)Vt ,

η =
hα

2
+Vt ,

β =
hα(bVt−Ut)

2
,

(3.2)

V (t +h) =Vt +h(θ−β+(5+0.04η)η),

U(t +h) =Ut +ah(−Ut−β+bη).
(3.3)

Most recent work [15] explores the RK2 Midpoint solver used in Hopkins and
Furber [14], and the Euler solver with multiple iterations in a single time step update
to reduce the spike lags (but without considering the computational overhead). The
authors succeeded in reducing the spike lags from previous studies and provided some
graphical comparison of the 10 first spikes. It is shown that when the neuron is subject
to a constant DC current, the 10th spike generates some spike lag (approximately 4 ms,
judging from the plots in [15]) compared to the reference with a very accurate ODE
solver and binary64 floating-point arithmetic. Therefore, longer simulations would
still produce substantial spike lag where some simulators with binary64 floating-point
arithmetic would yield different spike timings from SpiNNaker; this results in two
simulations on different platform with the same initial conditions and parameters that
do not produce the same results. This kind of inability to reproduce simulation results
between computers and environments is generally not desired and should be evaluated,
and the level of expected differences clearly stated for each system. Therefore, it is
important to address further why this large reported spike timing error occurs in fixed-
point arithmetic and how it can be reduced with minimal decrease in efficiency (which
is the main goal of using fixed-point arithmetic in the first place).

All of the experiments run in the next subsection are done with a GCC compiler op-
timization -O2 or -Ofast turned on. The flag -O2 causes the compiler to undertake the
second level optimisation (out of three main levels in an increasing complexity) [77].
The flag -Ofast can result in faster code than -O2, but violates compliance of stan-
dards which can affect things like rounding. Therefore, for measuring the efficiency of
code -Ofast is used while for checking accuracy and rounding properties -O2 is used.
Note that the SpiNNaker toolchain, at the time of writing, in various different parts
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of compilation uses either -Os for binary size optimization or -Ofast for speed, and
these different flags may provide minor differences (compared to the improvements
presented here) in spike timings due to reordering of arithmetic operations in the ODE
solver.

3.1.2 Accuracy benchmark

For the purposes of evaluating various improvements to the fixed-point arithmetic the
constant DC current test from Hopkins and Furber [14] was replicated. The test is
done by evaluating a Regular Spiking (RS) Izhikevich neuron (with the parameters:
a = 0.02, b = 0.2, c =−65mV, d = 8, Vinit =−75mV,andUinit = 0). This neuron is
stimulated at 60 ms with a step current of 4.775 nA which is left until the simulation
is stopped. This constant current should cause an approximately 10 Hz spike rate with
100 ms intervals between spikes.

In Hopkins and Furber [14] the reference for comparison is taken to be a Math-
ematica implementation that provides a very accurate solution (very accurate ODE
solver, adaptive time step, arbitrary precision arithmetic). In the tests of this thesis,
for simplicity, the reference for comparison was chosen to be an RK2 Midpoint ODE
solver, the same that is used in SpiNNaker, in binary64 arithmetic. This is easier to
run as it can be done on SpiNNaker using software binary64 arithmetic and it removes
the algorithmic error from the comparison as the same ODE solver algorithm is used
in the reference. Therefore, theoretically, a good implementation of RK2 Midpoint in
fixed-point arithmetic could produce the same spike timings as the RK2 Midpoint in
binary64 arithmetic, whereas choosing a reference to be a different, better, ODE solver,
will never manage to match exactly the problem under testing with the reference. This
kind of fixed error due to different ODE solvers can be neglected for our purposes of
evaluating different types of arithmetic. This is discussed further in Section 4.4.1.

Hopkins and Furber [14] provided graphical plots of the spike lag/lead of various
ODE solvers and arithmetics when the neuron is stimulated with the above conditions
until it has fired 19 spikes. Multiple tests with 1 ms and 0.1 ms time steps were per-
formed. It was shown that the current default SpiNNaker ODE solver with fixed-point
arithmetic and a 1 ms time step produces approximately 82 ms of spike lag in the 19th
spike, compared to the very accurate Mathematica reference. This means that the neu-
ron produced the 19th spike 82 ms later than the reference. Whereas, with a 0.1 ms it
produces approximately 57 ms spike lag in the 19th spike. It is evident that time step
size is important, but the spike lag at 0.1 ms time step still seems very high.
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Figure 3.1: Top: 6 first spikes, bottom: 6 last spikes, from the 19 spikes of the neuron
being stimulated with a constant DC current input. The RK2 Midpoint ODE solver
(the default in SpiNNaker) is used as in Hopkins and Furber [14]. Binary64 traces act
as references for each fixed-point test case. The visible drift of each spike from the
reference is spike lag/lead which is used as the main measurement of error.

The test with the RK2 Midpoint ODE solver that Hopkins and Furber [14] used is
replicated here using the PyNN script included in Appendix A. Figure 3.1 shows the
membrane potential traces and Figure 3.2 shows the spike lags of the first 19 spikes,
with 0.1 ms and 1 ms time steps and the default fixed-point arithmetic using the s16.15
data type. Single-precision (binary32) floating-point spike lags are also included for
comparison, mainly because it is generally considered to be a better arithmetic than
fixed-point, due to the wide range of representable values and is available on SpiN-
Naker2 in hardware.

The reference of each run is a corresponding binary64 set-up, with the same ODE
solver and the same fixed time step. The initial conditions of the ODE, such as con-
stants that are used on each step and the initial values of various variables, are assigned
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Figure 3.2: Spike lag of the Izhikevich neuron model with different arithmetics and
time steps. Using the RK2 midpoint ODE solver, results reproduced as in Hopkins
and Furber [14], but with a different (binary64) reference for each time step, instead of
Mathematica.

the best possible representation in a given arithmetic (except the DC current value
of 4.775 nA which is fixed at the nearest s16.15 value of 4.774993896484375 for all
tests), which means that the accuracy of constants is included in the arithmetic error.
It can sometimes be useful to remove this source of error in the constants as well so
that all ODE solvers start at the same state and also on each step use the same values,
and this can be done by using the constants of the lowest precision number representa-
tion from the set of arithmetics considered for comparison (usually this is possible, for
example binary64 arithmetic can represent all of the s16.15 values).

The 19th spike in Figure 3.2 has a spike lag of 56.6 ms and 33 ms with 0.1 ms and
1 ms time steps respectively. The reference has been changed from Mathematica to
the same algorithm (RK2 Midpoint) with the same time step (0.1 or 1 ms) run using
binary64 floating-point arithmetic. This removes the algorithmic error from the com-
parison (caused by a choice of the ODE algorithm and the time step size), therefore
spike lags are lower than reported by Hopkins and Furber [14] who included ODE
solver error in the comparison due to using Mathematica. The case with the time step
of 1 ms shows less lag because the reference has more lag than with the time step of
0.1 ms. This might lead one to think that accuracy is better at a 1 ms time step, but after
studying the traces in Figure 3.1 it becomes clear that it is worse in absolute terms.
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Figure 3.3: Spike lag of the Izhikevich neuron model with different arithmetics and
time steps (RK2 midpoint ODE solver [14]) after specifying the constant 0.04 as the
closest s16.15 value: 0.040008544921875. Error calculated by comparing to binary64
version of the solver.

3.1.3 Correct rounding of constants

Real numbers, such as the constants used in the ODE of the Izhikevich neuron model
explored here, usually cannot be represented exactly in a digital computer. The most
obvious path is to write down a decimal value in the program and leave it to the com-
piler to round it to the nearest value of the numerical format that is used. However,
as part of this work it was discovered that the GCC implementation of the fixed-point
arithmetic does not support rounding in decimal to fixed-point conversion and there-
fore the specification of constants suffers from truncation error which can be up to ε, a
machine epsilon for a given target fixed-point format; for ODE solvers this error will
in most cases accumulate as the constant is used inaccurately on each integration step.
Additionally it was found that there is no rounding on most of the common arithmetic
operations involving fixed-point numbers and between conversions from one numerical
format to the other, less precise fixed-point format. The pragma FX FULL PRECISION

defined in the fixed-point arithmetic standard [34] is not implemented in the GCC com-
piler version 6.3.1 that was used for this work and therefore there is no way to turn on
correct rounding which contributed to the errors shown by Hopkins and Furber [14].
Experiments on GCC compiler version 9.2.1 confirm that this is also the case in that
version.
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There are multiple constants and parameters that are fixed throughout the simula-
tion in (3.2) and (3.3). In (3.2) there are multiple constants: a, b, h, and 0.04 — where
a and b are used to change the spiking behaviour, h is the timestep and 0.04 is a con-
stant specific to this neuron model. a, b and h are parameters that in the SpiNNaker
simulation workflow are set-up by the user at PyNN level and are rounded correctly to
the s16.15 format (producing a nearest representable number) by Python interfaces on
the host and copied into the SpiNNaker machine before running a simulation. How-
ever, the constant 0.04 was hard coded in the C source from the original work of Hop-
kins and Furber [14] using the notation 0.04k (where k tells the compiler that this is
an s16.15 value) and therefore not rounded by the GCC compiler to the nearest repre-
sentable value 0.040008544921875, and instead due to binary truncation (round-down)
ending up as 0.03997802734375. Note that 0.04

2−15 = 1310.72, which tells us that 0.04
lies 72 % along the way from 0.03997802734375 to 0.040008544921875 and therefore
GCC choosing the former is incorrect.

The first step in this work was to specify constants in decimal exactly, correctly
rounded to the nearest s16.15 (for example explicitly stating 0.040008544921875 as
the constant instead of 0.04) which reduces the maximum error in the decimal to s16.15
conversion to ε

2 = 2−15

2 instead of up to full epsilon if the decimal value is stated and
left for the compiler to convert. As a result this has reduced the spike lag previously
reported by Hopkins and Furber [14] significantly, leading to an understanding that
ODE solvers can be extremely sensitive to how the constants are represented. This
was also noticed by Trensch et al. [15] and the solution that the authors took was to
add more bits in the fraction of the constants and add some scaling factors to return the
final result in s16.15.

In Figure 3.3 the exact same experiments that were run in Section 3.1.2 are shown
except that the two instances of the constant 0.04 in (3.2) and (3.3) are replaced by
0.040008544921875. The spike time errors of the 19th spike now are −7.3 ms and
−11 ms (leading, relative to the reference, instead of lagging as before) for the time
steps of 0.1 ms and 1 ms respectively. Compared to the original spike lags of 56.6 ms
and 33 ms this is a major improvement without reducing the speed of the ODE solver.
It is described that the macro FX FULL PRECISION in the fixed-point standard [34] is
meant for performance and that it should be turned off in the platforms that prefer
performance over accuracy. However, rounding of constants is done on compilation
and therefore it would not impact run-time performance and should be implemented
irrespective of whether the macro is turned on or not.
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Figure 3.4: Spike lag of the Izhikevich neuron model with different arithmetics and
time steps (RK2 midpoint ODE solver [14]) after specifying the constants as u0.32
and adding mixed-format multiplications. Error calculated by comparing to binary64
version of the solver.

3.1.4 Mixed-precision multipliers

Following from the numerical error improvements obtained in the above experiment,
another step in this direction was to represent all constants smaller than 1 as u0.32
instead of s16.15 which results in the maximum error of 2−32

2 . If the multiplicand
can be represented more precisely, then the result of the multiplication becomes more
accurate, even if the same precision number representation is used on the output. These
include the parameters a, b as these are typically smaller than 1 [75], parameter h

(configurable time step, requires knowing beforehand that it is going to be smaller than
1) and the constant 0.04. Trensch et al. [15] used s8.23 format for the constant 0.04, but
there is no downside to going all the way to u0.32 format if the constants are below 1.
Because these constants in u0.32 format will be multiplied by s16.15 values, different
multiplication routines have to be called. However, as we are still working with the
two 32-bit integers, the multipliers are not slower in any way from the s16.15× s16.15
multipliers — the only difference is that the shifting right is now by 32 bits instead
of 15 bits (which can be performed by ignoring the bottom result register, therefore in
fact it does not even need a shift instruction). Furthermore, when a fractional value is
multiplied by something, it is known that the result will be smaller than the multiplier
and therefore no saturation check is needed. In order to support this, routines for
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mixed-format multiplication operations were developed, where s16.15 variables can
be multiplied by u0.32 variables returning an s16.15 result — this is used in the next
subsection.

At this stage all of the mentioned constants and parameters were rounded to the
nearest u0.32 values and declared them as such, letting GCC call its own implemen-
tation of mixed-format multiplications. The accuracy result is demonstrated in Fig-
ure 3.4. The accuracy of the 19th spike is further improved from the results shown in
Sections 3.1.2 and 3.1.3 — spike lags of −4.3 ms and 0 ms were observed for 0.1 ms
and 1 ms time steps respectively.

Theoretically this improvement should not add any overhead to the ODE solver
as these new mixed-format multipliers are performed in the same number of instruc-
tions as the default s16.15 multiplications (or even less if saturation is removed and the
shifting right by 32 is not required). However, in practice, GCC seems to not inline
the multiplier function calls when u0.32 format is involved (even with the highest opti-
mization level -Ofast flag enabled) resulting in a much slower ODE solver due to the
requirement of branch and return from each multiplication.1 To achieve this, custom
mixed-format multipliers were used, of which some were already available as part of
SpiNNaker software, and confirmed that switching to u0.32 constants did not impact
the performance of the solver. Therefore, these new accuracy results in Figure 3.4 can
be considered to be obtained without adding any performance overhead to the origi-
nal RK2 Midpoint solver explored by Hopkins and Furber [14], with a downside that
GCC, at least in the current version, cannot optimize mixed-format multipliers even
with -Ofast enabled and a custom-made multiplication routine has to be used.

3.1.5 Rounding of multiplier results

As well as rounding on conversion between numerical formats, the GCC compiler does
not perform rounding on multiplication results. This section reports accuracy improve-
ments when all the multipliers in (3.2) and (3.3) are replaced by custom multipliers for
which rounding can be enabled as discussed in Section 2.1.1. Changing from the GCC
multiplications to the custom multiplications introduces the following effects, some of

1Multiple fixed-point arithmetic routines in GCC have some loss of precision and speed, for example
s16.15 multiplication by u0.32 is performed as multiplication of two s32.31 values, or the multiplication
of s16.15 by u0.16 is performed as multiplication of two s16.15 values [74]. This causes loss of precision
on conversion (in the arguments, even before multiplication is performed) and the main reason is that
GCC does not support mixed-format multipliers directly, as indicated by the list of internal compiler
functions for performing fixed-point arithmetic operations [78].
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Figure 3.5: Spike lag of the Izhikevich neuron model with different arithmetics and
time steps (RK2 midpoint ODE solver [14]) after adding rounding on the multiplica-
tions. Error calculated by comparing to binary64 version of the solver

which impact spike timing results slightly even without enabling rounding.

• Saturation is added on s16.15 × s16.15 multiplications. If the result overflows
16 integer bits, the highest positive or negative value in s16.15 is returned.

• No accuracy is lost in the argument conversion in s16.15 × u0.32 multiplica-
tions, which occurs in a corresponding GCC function as discussed above.

• All calls to multipliers can be inlined when compiled with -O2/-Ofast for per-
formance.

Figure 3.5 demonstrates the spike lags of the benchmark with rounding added
on the fixed-point multipliers, and floating-point versions for comparison. Rounding
to nearest is performed by inspecting the MSB of the residual as described in Sec-
tion 2.1.4 and adding 1ε to the result, if the bit is set. The position of the bits and
the magnitude of ε depends on the output format of the multiplication result, which in
some cases is s16.15 and in some cases s0.31, where possible.2 Spike lags were 0.1 ms

2Where two u0.32 variables were involved in the multiplication, operations were rearranged to mul-
tiply these values first, in order to be able to store the results as precisely as possible for more accurate
further operations. Such multiplications output s0.31 values and not u0.32 due to a requirement of neg-
ative sign to be added on the result in some places. Then, as soon as these outputs are multiplied by a
s16.15 value, the answers start to be in this format too. Note that it is possible to rearrange the negative
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Figure 3.6: Spike lag of the Izhikevich neuron model with different arithmetics and
time steps (RK2 midpoint ODE solver [14]) for a duration of 100 spikes with 0.1 ms
time step. Error calculated by comparing to the solver in binary64. The default arith-
metic, which falls off the diagram, had a difference of 293.8ms in the last spike.

and 3 ms for the time steps of 0.1 ms and 1 ms respectively. While the 1 ms time step
case is not impacted by rounding, it can be seen that with a small cost of one extra
addition for performing rounding, spike lags are further improved in the 0.1 ms time
step test case.

Figures 3.6 and 3.7 collect all the results from the previous sections, while running
the simulation for a longer duration until 100 spikes are produced. A clearer tendency
can then be seen: fixed-point with correctly rounded constants represented in u0.32
and with rounding on multiplications produces spike lags equivalent to the same set-
up run in floating-point arithmetic. Other approaches produce more lag and it usually
accumulates: the longer a neuron is stimulated with a constant DC current input, the
more lag each spike will have relative to binary64 reference.

At 0.1 ms time step, fixed point with multiplications with rounding is the best per-
forming solution, but the approach with correct constants plus mixed-precision multi-
pliers performs very well too and without any extra cost added from the default fixed-
point set-up explored by Hopkins and Furber [14] and Trensch et al. [15]. Lastly, it is
worth noting that these results can be drastically different when neuron parameters are
changed or a different ODE solver is used — this is explored further in Chapter 4.

signs until the final multiplication by s16.15 is performed and this would allow to output u0.32 × u0.32
results as u0.32. This was out of scope of this work and for simplicity s0.31 format was chosen with a
negative sign attached at the output instantaneously where needed.
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Figure 3.7: Spike lag of the Izhikevich neuron model with different arithmetics and
time steps (RK2 midpoint ODE solver [14]) for a duration of 100 spikes with 1 ms
time step. Error calculated by comparing to the binary64 version of the solver.

3.1.6 Performance

Table 3.1 shows the time taken for different arithmetics to run a single invocation of
(3.2) and (3.3). As expected, binary64 and binary32 floating-point arithmetics are
slower than most of the fixed-point arithmetics due to the lack of a hardware support.
A first interesting point to notice is that fixed-point GCC arithmetic with mixed-format
multipliers takes longer than binary64 arithmetic. As discussed, this is due to the fact
that GCC does not support mixed-format multipliers directly and they are performed
not inline, which then requires branching, and preserving register contents.

However, custom made multipliers, some of which are available in the SpiNNaker
toolchain, are much faster and can be inlined, which is visible in the performance mea-
surements. Non-mixed-format custom multipliers are slightly slower than the GCC
equivalents due to the addition of extra checks, such as saturation. It can be seen
that when some multipliers are switched from s16.15 × s16.15 to mixed-format cus-
tom multipliers, where saturation is not required because multipliers are smaller than
one, computation time decreases. Furthermore, computation time decreases because
multiplying a s16.15 by u0.32 and returning s16.15 requires no shifting as the high reg-
ister from the multiplication instructions contains an answer. Note that additionally, as
shown in the previous sections, mixed-format multipliers increase the accuracy of the
ODE solver too, so it is a better solution both in terms of accuracy and speed.
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Table 3.1: Speed of the integration step of the Izhikevich neuron model using RK2
Midpoint ODE solver for different arithmetics, compiled with the -Ofast GCC com-
piler optimization flag.

Arithmetic Speed of ODE (µs)

software binary64 9.99203
software binary32 6.68132
fixed-point: default [14] RK2 Midpoint, GCC 0.90881
fixed-point: mixed-precision multipliers, GCC 10.62621
fixed-point: default RK2 Midpoint, custom multipliers 1.86757
fixed-point: mixed-precision, custom multipliers 1.19345
fixed-point: mixed-precision, custom multipliers with RN 1.59792

Some overhead in the ODE solver with custom multipliers in mixed-precision is
visible, when compared with a default, because not all of the multipliers in the solver
are mixed-format, and those that are not, require saturation checks. Other possible
things that can impact performance is whether constants in different fixed-point for-
mats can be represented as immediate values in the arithmetic instructions of ARM or
have to be loaded from the memory to a register beforehand. Finally, rounding on the
multipliers adds approximately 30 % overhead due to an extra addition instruction on
each rounding, as expected.

3.2 Accurate exponential decay

This section describes an approach to improve the exponential decay accuracy in SpiN-
Naker software [79] and the first SpiNNaker2 prototype chip [59]. Both of these im-
plementations have s16.15 input/output formats. The accelerator was used by Liu et al.
[64] to run softmax function and by Yan et al. [21] in a structural plasticity model on
the first prototype SpiNNaker2 chip. Yan et al. [21] ran into limitations of s16.15 expo-
nential and to capture smaller weight changes had to write a 9 cycle software range re-

duction from floating-point to s16.15 and back to obtain wider dynamic range [Private
communication]. In this section it is demonstrated that even though the exponential
function is made to work in s16.15 the accuracy can still be improved with a negligi-
ble performance overhead for negative x arguments, without changing the underlying
algorithm. This is done by scaling the input arguments and interpreting the output
binary number as being in a different fixed-point format than the nominal s16.15. To
evaluate accuracy, software implementation of the exponential function on SpiNNaker
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was used, but the demonstrated method is directly applicable to the hardware imple-
mentation as well.

3.2.1 Background of the problem

Exponential decay is described as

X(t) = X0e−
t

τx , (3.4)

where X0 is some initial value to be decayed over time t with the decay time constant
τx. A basic description of this is that because the exponent is negative, as time passes
a smaller value is returned by the exponential and therefore the smaller fraction of the
current value X0 is returned. Exponential decay is one of the most common functions
in biological models used to model exponentially decaying quantities between neuron
spike times.

To model this function on SpiNNaker, Look-Up Tables (LUTs) are usually used
where a time constant is fixed throughout the simulation and because time is mod-
elled on a predefined grid such that only certain input values to the exponential can
ever be used, the size of these tables is manageable. For more complex simulations,
expk() with the s16.15 fixed-point format is provided as part of the SpiNNaker soft-
ware stack [79] (the equivalent of which was designed in hardware for SpiNNaker2
[59]). Given that it takes the input and output arguments as accum fixed-point val-
ues, the function domain is x ∈ [loge(2−15) =−10.3972077083..., loge(216−2−15) =

11.090354888493...]. To evaluate this function in terms of exponential decay, the
absolute error of ex for x ∈ [−10.3972077083991,0) was measured, comparing the
expk() and C binary64 exponential function. Figure 3.8 demonstrates absolute er-
rors over this range of inputs. It was found that the maximum error in this range is
1.04ε = 0.0000317382..., which means that the function, most of the time, returns
one of the neighbouring fixed-point values around the C binary64 result and on some
occasions a value two steps away.

The method to improve the accuracy of this function is as follows. Noting that
the exponential decay in (3.4) generates only negative input values to the exponential
function, we know that the output is always in the range [0,1) (excluding x = 0 as
a special case). Therefore, 17 bits in the s16.15 number representation are unused
(Figure 3.9) because there is no sign and there is no integer part on the output from the
exponential decay. A good solution would be to design a specialized implementation
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Figure 3.8: Exponential decay function e−x accuracy when calculated with SpiN-
Naker’s expk() function which works with s16.15 inputs and outputs.
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Decay
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accum:

Figure 3.9: Bit-level output description from the standard SpiNNaker exponential de-
cay function.

which takes as an input an s16.15 value and provides a fractional value (u0.32 or s0.31)
output to maximize precision of the exponential decay. However, designing a new
function incurs an additional effort and in case it is already a hardware routine the
most elegant solution would be to manipulate the standard s16.15 exponential function
to produce outputs in a different format.

3.2.2 Mixed-precision method for improving the accuracy

To obtain the exponential decay output ex as s0.31, we need to arrive at 216ex (a value
in s16.15 format shifted 16 places left, which gives the same value when the bits are
interpreted as s0.31). However, this cannot be done by simply running the arithmetic
algorithm for calculating ex and then shifting the output as that will place 0’s at the
bottom part and no accuracy improvement will be achieved. The following exponential
function property is of interest: 216ex = eloge(216)ex = e16×loge(2)+x. Now we have 216ex

as a s16.15 or ex as s0.31 when the binary point location is interpreted to be located at
16 bits to the left. Note that this was achieved not by shifting but by manipulating the
exponent x (add the constant loge(2)×16) to get the same effect as first calculating ex

and then shifting 16 places left, without propagating 0’s at the bottom end but letting
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the exponential algorithm fill in the bottom bits as best as it can.3 The method is
summarized in Figure 3.10. Note that binary point location has to be changed by using
the pointer manipulation and not simply casting,4 for example if we have an accum

a, we can change the interpretation of the binary point with pointers: long fract b

= *(long fract *)(&a) (or use reinterpret cast<>()). Then, the multiplier in
(3.4) can be modified to shift right by 31 instead of 15 to obtain X(t) as s16.15.

expk()x(accum) 𝑒" (accum)

expk()x(accum) 2$%𝑒" (accum)
+ln(2)
*16

Decimal 
point left 𝑒" (long fract)

Figure 3.10: Mixing formats for exponential decay. Top — standard accum format
function. Bottom — a method of scaling the inputs to improve accuracy.

The accuracy of the exponential decay function is now improved significantly as
shown in Figure 3.11. The maximum error in the input range x ∈ [loge(2−15), 0) is
0.79εs16.15 ≈ 0.000024108. However, this maximum error occurs only when x is close
to 0, as seen in the diagram. Using this approach, the average error is reduced ∼ 7×
from the standard s16.15 implementation of expk() function in the SpiNNaker soft-
ware stack. In more than half of the input domain, the function is up to 40000× more
accurate, purely due to 16 bits of extra precision on the output.

Additionally, since there are more bits at the output, the input domain of the func-
tion is increased to x ∈ [loge(2−31) = −21.4875625973583..., 0), where previously it
would saturate to 0 if x < −10.3972077083991.... This has an important effect on
neuromorphic algorithms because the decay process is now capturing smaller remain-
ing quantities of the decaying variable down to 2−31. One such example is in STDP
algorithms, where the weight change ∆wi j of a synapse is modelled as follows (more
on STDP in Section 3.3):

∆wi j =

F+(wi j)e
− |∆t|

τ+ if ∆t > 0,

F−(wi j)e
− |∆t|

τ− if ∆t ≤ 0,
(3.5)

3Note that the format u0.32 was intentionally not chosen as 17× loge(2) + x term would cause
saturation in the s16.15 exponential function when x≥ loge(0.5).

4If an s16.15 output from the exponential function would be cast to s0.31, the compiler would simply
pick the 15 bottom bits of the value and place them at the top of of the destination s0.31 variable, which
is in fact a correct behaviour.
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Figure 3.11: Improved exponential decay function e−x accuracy when calculated with
SpiNNaker’s expk() function, with s16.15 input and s16.15 output interpreted as
s0.31.

where ∆t = t j− ti is the temporal difference between the post- and presynaptic neu-
ron (connected by a synapse with the weight wi j) spikes, F+/−(wi j) describes how the
weight change depends on the previous synaptic weight, and τ+/− are decay constants.
It is clear from these equations that in STDP, the only arguments that are important
for the exponential function are the negative ones and the output values are between
0 and 1 as it is modelling exponential decay. The input/output data type combina-
tion of s16.15/s0.31 is especially suitable for this application instead of the standard
s16.15/s16.15 because there will be twice as many more bits at the output from the
exponential decay — a desirable property when one wants to model STDP very accu-
rately; and the range of possible input values (temporal distance between presynaptic
and postsynaptic spikes divided by the timing constant) before the output saturates to
0 now grows from −10.4 to −21.488.

This is important for short timing constants — for example, with a timing constant
τ+/− = 1, the maximum temporal difference, when using the s16.15/s16.15 input/out-
put format, t j−ti in 1 ms time steps is 10 ms — more than that and exponential function
saturates to 0 which will neglect small weight changes. By mixing input and output
data types in this way, we would now capture small weight changes when τ+/− = 1 ms
for pre-post temporal difference up to 21 ms. The proposed method does not require
any changes to the existing software expk() function and can also be used on the hard-
ware accelerator performing s16.15 exponential function which the first SpiNNaker2
prototype chip is equipped with [59].
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3.3 Extending the plasticity framework of SpiNNaker

In this section a model of three-factor STDP is developed on SpiNNaker by extending
SpiNNaker’s plasticity simulation algorithm shown in Section 2.3.3.3. The main fo-
cus in this thesis is performance and numerical accuracy issues with the learning rule,
especially because it involves multiple calls to the exponential function per spike-pair
processing. This learning rule can be useful to model learning based on delayed feed-
back from the environment, such as path finding and remembering in insects [80]. A
network performing classical conditioning was run with this learning rule on SpiN-
Naker [11].

3.3.1 Synaptic plasticity

Synaptic plasticity describes how the weights of the synapses change over time, and
it is believed to be the main mechanism in the brain driving long-term memory and
various forms of learning. The theory for this first started from what is now called
Hebbian learning, which states that the neurons that fire at the same time should have
their synaptic connections strengthened so that in the future those neurons have even
stronger correlation [81]. As described in this review [8], later, multiple extensions
to this idea have been developed, including the weakening of the synapses in certain
circumstances. Today both effects are known as Long-Term Potentiation (LTP) and
Long-Term Depression (LTD). Correlation between pre- and post-synaptic neurons is
the most important aspect, and it was shown experimentally that effects of LTP/LTD on
a synapse depend on pre- and post-synaptic neuron spike times in ∼100 ms time win-
dow; here LTD has a larger time window than LTP in which pre-post spike correlation
affects the synapse [8, 82].

STDP is an elegant description of plasticity from the perspective of computation
and spiking neural networks, as spike timings are the key information available in these
kind of networks. By considering only spike times, we are able to ignore the biophysi-
cal causes of plasticity which results in computationally less expensive algorithms that
are easier to analyse and set-up for simulation [58]. Therefore this section of the thesis
will focus on the computational models of various, most used, STDP functions and not
go into detail about more complex biophysical plasticity models. Excellent reviews of
timing based plasticity are given by Morrison et al. [58], Frémaux and Gerstner [83]
and are usually classified into short-term plasticity and long-term plasticity and the
latter is also subclassified into two-factor STDP and three-factor STDP.
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3.3.2 Two-factor spike-timing-dependent plasticity (STDP)

The most basic description of STDP states that the strengthening of the synapse is
induced when a pre-synaptic neuron fires shortly before a post-synaptic neuron and
the weakening of the synapse when this is reversed, the post-synaptic neuron fires
shortly before the pre-synaptic neuron. A pair-based STDP rule, which approximates
the data describing this kind of weight change ∆wi j found in pyramidal neurons of rats
([84]) is

∆wi j =

F+(w)e
− |∆t|

τ+ i f ∆t > 0,

F−(w)e
− |∆t|

τ− i f ∆t < 0,
(3.6)

where ∆t = t f
j − t f

i is the temporal difference between post- and pre-synaptic neuron
spike times and F±(w) is a function describing the dependence of the update on the
current synaptic weight, and τ+ and τ− are timing constants controlling the sizes of
the LTP and LTD windows. An approach of choosing which pair of pre- and post-
synaptic spikes are considered for a specific weight update must also be specified (the
choice of a spike-pairing scheme) [58].

As described by Morrison et al. [58] this type of STDP rule can be simulated by
keeping track of the spiking activity in the form of an exponentially decaying history

trace
ds
dt

=− s
τ
+∑

t f
i

δ(t− t f
i ), (3.7)

which can be thought of as the value which increases by one on each spike at times
t f
i by the Dirac delta function δ(t − t f

i ), and exponentially decays to zero over time
with a time constant τ. When such a trace is kept for each pre- and post-synaptic
neuron, on the arrival of the pre-synaptic spike we can look up the current value of the
post-synaptic history trace to decide how much depression should be induced, and on
the arrival of the post-synaptic spike we look at the pre-synaptic history trace to find
the value of the potentiation that should be induced [58]. Therefore the dynamics of
the weight wi j between the pre-synaptic neuron i and post-synaptic neuron j with the
corresponding history traces si and s j can now be described as

dwi j

dt
= F+(wi j)si(t)δ(t− t f

j )−F−(wi j)s j(t)δ(t− t f
i ), (3.8)

where the Dirac delta function δ(t − t f ) causes updates to the weight only on spike
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times as shown by Morrison et al. [58].

For the weight dependence rule F±(w), multiple options are explored in the litera-
ture. The main ones are additive (F±(w) = A±, a predefined constant controlling the
maximum weight change when ∆t is close to zero) [57], multiplicative (F±(w) ∝ w)
[85] and power law (F±(w) ∝ wµ) [67]. The last one is particularly complex due to
required general exponentiation function. All of these options for STDP are required
by the computational neuroscience community as there is yet no consensus as to the
one formulation for STDP that best fits the observed data [58].

3.3.3 Three-factor STDP

Many extensions have been proposed to STDP such as the inclusion of additional
spikes [86] (which as pointed out in [58] can replicate experimental data much better
than the pair-based STDP) and the post-synaptic voltage [87]. However, while these
extensions may improve the ability of STDP to capture the statistical relationship be-
tween pre- and post-synaptic activity, Hebbian learning still provides no means of con-
trolling what to learn. For example, considering a two layer feed-forward network in
which an output neuron is stimulated at the same time by two different input neurons,
Hebbian learning will strengthen the synapses between both input neurons and the out-
put. However Hebbian learning rules provide no synapse-level means of associating
reward or punishment, surprise or novelty, or any other input that might arrive some-
time later, after the output neuron spikes, that could allow the algorithm to learn how
to behave next time on the same inputs in order to maximise reward. Dopamine (DA)
has been identified as a potential reward signal in the brain [88] and has been experi-
mentally shown to control synaptic plasticity in a large number of ways [89]. On this
basis computational neuroscientists developed learning rules based on neuromodula-

tion which extend Hebbian learning to include reinforcement from neuromodulators
such as dopamine [90, 91].

In most of the models, two extra history traces (similar to pre- and post-synaptic
neuron spiking traces in Section 3.3.2) are introduced: an eligibility trace, which sig-
nals that the synapse is a candidate for plasticity due to STDP effects, and a third-factor

trace, which models the concentration of some neuromodulator at a synapse. These
two traces are combined to cause plasticity in the synapses, for example dynamics
used by Izhikevich [90] (and more recently supported by experimental evidence [89])
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to model networks doing something similar to classical conditioning experiments, as

dwi j

dt
= ei jh j(M3rd(t)), (3.9)

dei j

dt
=−ei j

τe
+STDP(∆t)δ(t− ti/ j), (3.10)

where wi j is the weight of a synapse between a pre-synaptic neuron i and a post-
synaptic neuron j, M3rd(t) is a global third factor and h j is a function of the third
factor specific to a post-synaptic neuron j. A history trace ei j is an eligibility trace of
the synapse, which step increases on pre- and post-synaptic neuron spikes at times ti/ j

through the Dirac delta function δ(t − ti/ j) by an amount dictated by the STDP(∆t),
which in two-factor learning rules is a weight change function in (3.6). It decays
exponentially which is controlled by the decay constant τe.

3.3.4 Izhikevich learning rule

Izhikevich [90] raises a question: how does an animal know which of the many cues
and actions preceding a reward should be credited for the reward? It is shown that a
dopamine-modulated STDP model has a built-in instrumental conditioning property —
the associations between actions and rewards are learned automatically by reinforcing
the firing patterns (networks of synapses) responsible, even when the firings of those
patterns are followed by a delayed reward or masked by other network activity. To
achieve this each synapse has an eligibility trace C:

dC
dt

=−C
τc

+STDP(∆t)δ(t− ti/ j), (3.11)

where τc is the decay time constant of the eligibility trace and STDP(∆t) represents
the magnitude of the change to make to the eligibility trace in response to a pair of pre-
and post-synaptic spikes with temporal difference ∆t = t j− ti. Finally, δ(t− ti/ j) is a
Dirac delta function used to apply the effect of STDP to the trace at the times of pre-
or post-synaptic spikes.

The concentration of dopamine is described by a variable D:

dD
dt

=−D
τd

+Dc ∑
t f
d

δ(t− t f
d ), (3.12)
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where τd is the time constant of dopamine trace, Dc is the increase in dopamine con-
centration caused by each incoming dopaminergic spike and t f

d are the times of these
spikes. (3.11) and (3.12) are then combined to calculate the change in synaptic strength
W with

dW
dt

=CD. (3.13)

As discussed in Section 3.3.2, when a post-synaptic spike arrives very shortly after a
pre-synaptic spike, a standard STDP rule would immediately potentiate the synaptic
strength. However when using the three-factor STDP rule, this potentiation is instead
applied to the eligibility trace. Because changes to the synaptic strength are gated by
dopamine concentration D (3.13), changes are only made to the synaptic strength if
D 6= 0. Furthermore, if the eligibility trace has decayed back to 0 before any dopamin-
ergic spikes arrive, the synaptic strength will not be changed.

Because (3.13) describes a continuous weight change, it cannot be directly evalu-
ated within the event-driven STDP algorithm of SpiNNaker, where pre-synaptic spikes
trigger STDP updates. However, it can be transformed into a form suitable for event-
driven evaluation. Firstly consider the C and D traces in (3.11) and (3.12). Similarly to
the pre- and post-synaptic STDP traces discussed in Section 3.3.2, between the times at
which spikes occur, both of these equations are simple first-order linear ODEs. There-
fore we can write down the following equations to calculate the change of C and D

between spikes:

Ci j =Ci j(t last
c )e−

t−tlast
c

τc , (3.14)

D j = D j(t last
d )e−

t−tlast
d

τd , (3.15)

where t last
c is the time of the last eligibility trace update (when either a pre- or post-

synaptic spike caused an STDP update) and t last
d is the time of the last dopamine trace

update (which occurs when a dopamine spike is received). So that each (post-synaptic)
neuron can be independently targeted by dopaminergic spikes, the dopamine trace val-
ues (D j) are stored in the post-synaptic history structure along with the post-synaptic
traces (s j) and event times (t j) in a similar manner to the “target spikes” in the learning
rule presented by Nichols et al. [92].5 However, because the eligibility traces (C) are

5An alternative would be that each synapse stores a separate variable containing the level of
dopamine, in which case the PyNN network would have to be specified in terms of dopaminergic spikes
arriving at sets of synapses. For simplicity it was chosen to model dopamine level per neuron, which
is changed by dopaminergic neuron sending spikes into it — this is very suitable implementation in the
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individual to each synapse, they must be stored alongside the synaptic weights (wi j)
in SDRAM and can thus only be updated within the PROCESSROW (Algorithm 1)
function when they have been transferred into local memory. We can now substitute
(3.14) and (3.15) into (3.13) to obtain the weight change dynamics:

dwi j

dt
=C(t last

c )D(t last
d )e−

t−tlast
c

τc e−
t−tlast

d
τd . (3.16)

Now, by integrating the preceding equation, the total weight change since the last
update at tlast can be found:

∆wi j =C(t last
c )D(t last

d )
∫ t

t last
e−

t−tlast
c

τc e−
t−tlast

d
τd dt, (3.17)

∆wi j =
C(t last

c )D(t last
d )

−
(

1
τc
+ 1

τd

) (
e−

t−tlast
c

τc e−
t−tlast

d
τd − e−

tlast−tlast
c

τc e−
tlast−tlast

d
τd

)
. (3.18)

The final update Algorithm 1 in Section 2.3.3.3 makes to each synaptic weight is
to apply the effect of the pre-synaptic spike at time t. Therefore, if the Algorithm 1 is
extended to update the eligibility trace, told will always represent the last time C was
updated: t last = t last

c = told . Furthermore, before the inner loop over the post-synaptic
events occurs, the last dopamine trace value is decayed to told using (3.15). Therefore,
t last = t last

d = t last
c = told , meaning that (3.18) can be simplified to

∆wi j =
C(told)D(told)

−
(

1
τc
+ 1

τd

) (e−
t−told

τc e−
t−told

τd −1
)
. (3.19)

Algorithm 2 shows the extended, three-factor STDP algorithm. The functions
applyPostSpike and applyPreSpike used to directly update the synaptic weight
in Algorithm 1 are now instead used to update the eligibility trace (Ci j). When pre-
or post-synaptic events are applied, (3.14) is used to decay the eligibility trace (Ci j)
and (3.19) is used to update the synaptic weight (wi j). Finally, as previously discussed,
(3.15) is used to obtain the decayed D j trace values at told and t j.

To allow users to implement dopaminergic synapses sPyNNaker [53] software was
modified, the SpiNNaker implementation of PyNN [52]. To implement the dopamine
signal, dopaminergic neuron type was introduced that communicates through a special

SpiNNaker environment as this requires only a separate type of synapse which will not cause contribu-
tions to the membrane potential but instead to the dopamine level at the post-synaptic neuron.
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Algorithm 2 Algorithmic implementation of three-factor STDP
function PROCESSROW(t)

for all j in postSynapticNeurons do
history← getHistoryEntries( j, told, t)
(tprev, sprev, Dprev, typeprev)← getPrecedingHistoryEntry(t)

tc← told

Dc← DprevEXP(
−(tc−tprev

τD
)

for all (t j, s j, D j, type j) in history do

wi j← wi j +
Ci jDc

−
(

1
τC

+ 1
τD

) (EXP(− (t j−tc
τC

)EXP(− (t j−tc
τD

)−1
)

Ci j←Ci jEXP(− t j−tc
τC

)
if type j is not dopamine then

Ci j← applyPostSpike(Ci j, t j, told, si)

Dc← D j
tc← t j

(t j, s j, D j, type j)← getLastHistoryEntry(t)

wi j← wi j +
Ci jDc

−
(

1
τC

+ 1
τD

) (EXP(− (t−tc
τC

)EXP(− (t−tc
τD

)−1
)

Ci j←Ci jEXP(− t−tc
τC

)

Ci j← applyPreSpike(Ci j, t, t j, s j)

addWeightToRingBuffer(wi j, j)

si← addPreSpike(si, t, told)
told ← t
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type of synapse (similar to the “target synapses” employed by Nichols et al. [92])
which do not cause updates to the membrane potential of the post synaptic neuron but
simply bring information about dopaminergic spikes into it. This approach has the
advantage of allowing any type of PyNN neuron to act as a source of dopaminergic
spikes. When a core receives a dopaminergic spike it is not added to the delay ring
buffer but is instead added directly to the post synaptic history structure where it can
be accessed by Algorithm 2.

3.3.5 Numerical accuracy

Apart from precision loss due to weight scaling [53] (which can be improved with
rounding), there are 4 main issues that cause numerical errors of this plasticity model
on SpiNNaker.

• The size of the exponential decay LUTs is limited by the constraints of local
memory, therefore discretization of the LUT has to be done if long time constants
are used.

• When a specific time value ∆t lies between two entries available in the LUT, the
smaller one is chosen irrespective of how close the time is to the larger entry.

• s4.11 fixed-point format for traces and exponential decay LUTs is used as cal-
culated to be optimal by Knight [56, Sec. 4.3.2]. However, there is no reason for
having any integer and sign parts in the exponential decays as the outputs from
the exponential decay are in the range (0,1]. The entries in this table can be
stored as u0.16, then the traces multiplied by this and, if required at the bottom
of register, shifted right by 16 places to return decayed traces in s4.11 — this
will give 5 extra bits of accuracy on the decay.

• There is no rounding on multipliers when exponential decay is applied.

3.3.5.1 Exponential look-up tables on SpiNNaker

Figure 3.12 shows how exponential decay look-up tables e−
t

τx for some time constant
τx are generated on the host and what values are stored inside SpiNNaker memory for
different time shift factors τx,shift ∈ Z where τx,shift ≥ 0. First of all, at the host side
in Python, function e−

t
τx is calculated for every value t ∈ [0,SIZE× 2τx,shift ] in steps
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Figure 3.12: Illustration of how exponential look-up-tables are generated on the host
machine and used in SpiNNaker. Picture a) shows values stored for each time step
dt. Picture b) shows values stored for every second argument — this is controlled by
setting a macro τx,shift = 1 in C source code. The solid curve shows the ideal function
and the dashed blocks depict only those values that are needed in the event-driven
simulation (multiples of time step dt).
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of dt � τx,shift, where dt is a simulation time step and � and � are logical shift
operations. Then, these values are copied into the SDRAM of each SpiNNaker chip.

When the simulation starts, each core responsible for modeling the dynamics in-
volving exponential decay with the timing constant τx, copies this look up table into
DTCM. Finally, when the simulation is running, the exponential decay for some value
t is obtained by indexing the look-up table with an index t � τx,shift. SIZE and τx,shift

can be tuned beforehand to control how large and what accuracy exponential decay
look-up tables will be generated for each time constant. Note that when τx,shift 6= 0,
not all arguments t on the x-axis get their corresponding exponential value allocated to
them. If, at the time of simulation, the program is accessing exponential decay of an
argument without a corresponding entry in the LUT, the closest available larger value
is returned (round-down is used on conversion from time to LUT index).

3.3.5.2 Testing numerical accuracy

A simple test case was developed for neuromodulated STDP to trigger a single weight
update. This test case is not necessarily covering all possibilities, but should be general
enough to give an impression of what happens numerically in a lot of STDP simulation
configurations that a user can come up with and is enough to demonstrate improve-
ments to the arithmetic — although a more extensive study with various test cases and
a bigger network would be useful in the future.

A PyNN script is shown in Appendix B for the following test case. There are three
neurons: post- and pre-synaptic neurons, with a synapse that is plastic, and a dopamin-
ergic neuron connecting to the post-synaptic neuron, with a synapse that is identified
as causing Dopamine (DA) level to increase at the post-synaptic neuron’s end. Two
pre-synaptic spikes are added, at times 1500 and 2400 ms. The post-synaptic neuron is
stimulated at 1502 and fires at time 1503 ms. The dendritic delay is 1 ms so the post-
synaptic time is at 1504 ms when processed in STDP. The dopamine neuron spikes at
1600+1 ms (also with added dendritic delay). The additive STDP all-to-all pairing rule
is used with parameters τ+ = 10, τ− = 12, A+ = 1, A− = 1, τc = 1000, and τd = 200
as in [11].

In this scenario, there is only one plasticity invocation (of Algorithm 2), at time
2400 when a pre-synaptic spike arrives. Here, two spikes are in the post-synaptic
history (1504 and 1601 (DA)) but none of them cause a weight update. The first one
causes the eligibility trace to increase, but since the dopamine trace is zero at that point,
there is no weight increase. Then, the DA spike at 1601 causes the dopamine trace to
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increase and the eligibility trace to decrease from the previous value to the value at
time 1601, but since we are using the previous value of dopamine trace in (3.19), there
is no weight update. Finally, on the pre-synaptic spike at 2400, both eligibility and
dopamine traces are non-zero and the weight is updated. At time 1504 the eligibility
trace obtains the value from STDP of

A+× e−
1504−1500

τ+ = 0.670320046035639.

Then at time 1601 it is decayed to

0.670320046035639× e−
1601−1504

τC = 0.608352983811176.

Finally, at time 2400, (3.19) is applied:

∆w =
0.608352983811176×0.1

−0.006
(e−

2400−1601
1000 × e−

2400−1601
200 −1)≈ 10.0553.

By running the same experiment on SpiNNaker, which uses fixed-point arithmetic with
various tradeoffs for memory space and speed as discussed above, the final weight
evaluates to 10.0087890625, which means an absolute error of approximately 0.04648.
While this error did not damage the qualitative behaviour of the classical conditioning
experiment run on SpiNNaker [11], it might cause issues in general and therefore it is
worth addressing this numerical inaccuracy and exploring the options for improvement
by changing various parts of the SpiNNaker plasticity framework.

3.3.5.3 Improving accuracy

Multiple basic improvements were applied to the arithmetic involved: 1) store expo-
nential decay LUT entries in u0.16 16-bit fixed-point format instead of s4.11; 2) add
rounding on all 16-bit multipliers involved in the weight update; 3) take the nearest
value in the exponential decay LUT instead of the smaller one (again this is rounding
of the index t� τx,shift before shifting). For using u0.16 exponential decays, the multi-
pliers had to be modified to take one signed and one unsigned value, where the default
SpiNNaker framework uses the instruction smulbb(x,decay) which sign-extends each
input value before multiplying. A shift of 16 steps right is also required instead of
11. None of this impacts performance, except rounding. After these changes, the final
weight from the above experiment was 10.09130859375, with an error of approxi-
mately 0.03600859375. This error is slightly lower than before but still significant and
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is mainly due to the s4.11 numerical format.

As the 16-bit format accuracy is now exhausted, it can be beneficial to try to hold
some of the multiplication results in (3.19) in higher precision. The main source of
error is multiplication by 1

−( 1
τc +

1
τd
)
=− 1

0.006 =−166.666.... A large value in this con-

stant multiplier magnifies the error in the multiplicand that is in low precision with the
format s4.11. To reduce this, start by rewriting (3.19):

∆wi j =−
C(told)D(told)

−
(

1
τc
+ 1

τd

) (1− e−
t−told

τc e−
t−told

τd

)
. (3.20)

This way the multiplication of two exponentials in u0.16 format can be kept in u1.31
format (one integer bit left to cover the case when exponentials return 0). Then this
is subtracted from 1 and multiply by the traces. The traces are in s4.11 format, there-
fore their multiplication C(told)D(told) can be kept in s8.22 format (without loss of
precision). Then, the multiplication

−C(told)D(told)

(
1− e−

t−told
τc e−

t−told
τd

)
returns a 64-bit answer and the result is shifted right 31 places to return to s8.22 format.
Finally, the multiplication by −166.666... can be performed and because this time the
multiplicand has more correct bits at the bottom, the multiplication result error is re-
duced. After these improvements, the final weight from SpiNNaker was 10.07421875
with an error of 0.01891875.

Further error reduction can be achieved by holding intermediate values in even
more precise formats, and storing the exponential decays as u0.32 values, either by
using twice as much memory for the LUTs or using software expk() or an accelerator
with the mixed-format improvements discussed in Section 3.2. This was tested by
extending the LUT and the final weight update was 10.06591796875 with the error of
0.01261796875 (∼ 4× improvement). Without extensive investigation, this is probably
as good as it can get with history traces held in the s4.11 format.

3.3.6 Incoming spike processing performance

This section explores performance of the learning rule presented in Section 3.3.4 with-
out any of the aforementioned accuracy improvements, as it was published [11].

SpiNNaker machines have no form of global synchronisation. Therefore each core
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Figure 3.13: Comparison between the incoming spike processing performance of stan-
dard STDP (with an additive weight dependence) and three-factor STDP for different
post-synaptic and DA spiking rates.

needs to update the state of each neuron it is responsible for simulating and process any
incoming spikes it has received within a predetermined simulation time step (typically
1 ms). This means that the number of neurons simulated on each core, the complexity
of the neuron or synapse model, the density of connectivity and the rate of incoming
spikes all need to be balanced to guarantee real time operation.

In Figure 3.13 a comparison is shown of the incoming spike processing perfor-
mance of a single SpiNNaker core simulating a population of LIF neurons with stan-
dard STDP and three-factor STDP synapses. The extra local memory required to store
dopamine trace values in the post-synaptic history structure means that, when using
the three-factor STDP algorithm described in the previous section, each core is lim-
ited to simulating 126 neurons. As Knight and Furber [55] discussed, the length of
synaptic matrix rows has a significant effect on synapse processing performance. This
is because, beyond the computational cost of processing each synapse, there is a large
fixed cost in processing each row meaning that the best performance is obtained with
long row lengths.

Following the procedure outlined by Knight and Furber [55], the population of
neurons is stimulated with an increasing number of 10 Hz Poisson spike trains in order
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to determine the maximum incoming spike rate that the core could process in real
time. Additionally, because the number of events in the post-synaptic history structure
affects the performance of Algorithms 1 and 2, the post-synaptic firing rate is varied
by injecting a fixed current into the simulated neurons. Because, in the case of three-
factor STDP, incoming dopaminergic spikes also get added to the post-synaptic history
structure, the performance is also measured with a single dopaminergic neuron, firing
at 8 Hz, connected to all neurons in the benchmark population.

This showed that the highest number of inputs into a single core can be achieved
with rows approximately 60 synapses long (50 % connection density). Furthermore, as
the post synaptic rate is increased, more synaptic history traces have to be processed
on each pre-synaptic spike, so overall performance decreases. As predicted, perfor-
mance with short synaptic rows (10–40 synapses per neuron) suffers from the fixed
row-processing overheads mentioned earlier in this section.

It is also worth noting that with very long synaptic rows (80–120 synapses per
neuron) performance is also reduced. In [11] it was predicted that this happens be-
cause, with very long rows that take a long time to process, even small variations in
the number of spikes emitted by the Poisson sources each time step can overrun the
time available. The maximum number of synaptic connections incoming into a core
simulating a network spiking at 10 Hz and neuromodulated with an 8 Hz dopaminer-
gic signal was 0.38 million which is approximately two times slower than the simplest
additive STDP rule.

Note that this learning rule has 4 different decay constants and it has multiple calls
to exponentials in Algorithm 2. In the cases where a small simulation time step is used,
exponential LUTs will become larger than with the time step of 1 ms used in this study
and will not fit into the local memory. In those cases it would likely be needed to call
the actual exponential function which would add further overhead to the Algorithm 2.
Therefore, these kind of learning rules are the main motivation for adding a hardware
accelerator for the exponential function into neuromorphic chips.

3.3.7 Scaling to cortical levels of connectivity

SpiNNaker was designed around the assumption that each ARM core would be respon-
sible for simulating 1000 neurons with 1000 input synapses, each receiving spikes at
a mean rate of 10 Hz [76]. However, over recent years, it has been found that, on av-
erage, cortical neurons have 8000 input synapses [93, 94, 95] each receiving spikes at
the lower average rate of around 3 Hz [96]. While Knight and Furber [55] showed that
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Figure 3.14: Time taken to simulate 5 s of network activity with 8000 inputs to each
neuron. The mean firing rate of each input is 3 Hz, the post synaptic firing rate is 3 Hz,
and the mean firing rate of the dopaminergic neuron is 4.5 Hz.

SpiNNaker was capable of simulating neurons in real-time with these higher levels of
connectivity, even when using standard STDP this required reducing the number of
neurons simulated on each core to around only 30. The alternative is to slow down the
simulation to some fixed fraction of real-time.

Figure 3.14 demonstrates how the number of neurons per core and the simulation
speed can be traded off when simulating neurons with three-factor STDP and corti-
cal levels of connectivity. Each neuron in the network is densely connected to 8000
Poisson sources firing at 3 Hz as well as to a single dopaminergic neuron spiking at an
average rate of 4.5 Hz. To simulate this network in real-time, the maximum number of
neurons that could be placed on each core was only 15. However, when the number of
neurons simulated on each core was increased to the maximum of 126, the simulation
had to be slowed down by a factor of 11×.

3.4 Conclusion

This chapter presents numerical issues and methods to reduce them, in the two main
levels of neuromorphic simulation: neurons and synaptic plasticity.

First, numerical accuracy of a well known Izhikevich neuron model was explored;
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this model is famous for its configurability to provide a diverse range of spiking pat-
terns and it has a low computational cost compared to some other more biologically-
realistic models. It is characterised by an ODE, which in SpiNNaker is solved for
updating on every simulation time step in fixed-point arithmetic with RK2 Midpoint
ODE solver. Multiple sources of literature have demonstrated that this neuron has
spike lagging due to certain issues with fixed-point arithmetic. It was demonstrated
in this chapter that, in fact, an Izhikevich neuron in fixed-point arithmetic can do as
well as with floating-point arithmetic if we are prepared to undertake a few simple
modifications: specify constants correctly rounded; specify constants and parameters
as accurately as possible in a given n-bit fixed-point arithmetic; and round on arith-
metic operations where possible. It was shown that with these modifications spike lag
is reduced significantly and becomes negligible in a commonly used configuration of
the neuron (RS neuron).

The second and third parts were about exponential decay accuracy and new plas-
ticity rules. It was shown that the s16.15 exponential decay function can be improved
by manipulating the inputs and outputs without changing the actual software or hard-
ware algorithm of the function. Furthermore, a new plasticity rule was implemented on
SpiNNaker and was used to explore numerical accuracy, fixed-point arithmetic prop-
erties, and performance. Numerical accuracy was explored in a certain test case with
multiple methods for improving it, similar to the methods used in the first part of the
chapter for the neuron model.

The techniques shown in this chapter will be useful in the current generation SpiN-
Naker platform and will inform SpiNNaker2 as well. The Izhikevich ODE solver was
shown to be very accurate, however, it was studied here only in one setting and other
types of spiking behaviours or ODE solvers are worth looking into. It appears that
when neuron parameters are changed, the RK2 Midpoint ODE solver can cause large
spiking lags even with binary32 floating-point arithmetic. Therefore the next chapter
is dedicated to exploring these issues in more depth.
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Chapter 4

Stochastic Rounding

Replacing standard floating-point arithmetic by fixed-point arithmetic typically results

in increased numerical errors. On SpiNNaker this mainly happens when simulating

complex neuron models or plasticity learning rules in fixed-point arithmetic as shown

in the previous chapter. In this chapter the numerical errors in the solution of ODEs

are further investigated. The Izhikevich neuron model is used in two configurations

and with four ODE solvers to demonstrate that rounding has an important role in pro-

ducing accurate spike timings and that fixed-point arithmetic with round to nearest

used in the previous chapter does not always perform accurately. It is shown that

fixed-point arithmetic with stochastic rounding consistently results in smaller errors

compared to binary32 floating-point arithmetic and fixed-point arithmetic with round

to nearest when tested on four ODE solvers and two neuron configurations. These

results demonstrate that on average stochastic rounding can bring the numerical ac-

curacy of this neuron model simulated in 32-bit fixed-point arithmetic close to that of

binary64 floating-point arithmetic, by paying some cost for generating random num-

bers. Furthermore, an accelerator for stochastic rounding is designed and evaluated

for SpiNNaker2 which conveniently already has a PRNG in hardware.

A major part of this chapter was reproduced from the material that was published

in the Philosophical Transactions of the Royal Society A journal [33].

4.1 Introduction and motivation

Recent interest in deep and convolutional networks has led to the development of
highly-effective systems that incur vast numbers of computational operations, but where
the requirements for high-precision are limited. As a result, reduced precision formats,

85
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such as fixed-point formats of various word lengths, are becoming increasingly popular
in architectures developed specifically for machine learning. Where high throughput
of arithmetic operations is required, accuracy is sacrificed by changing the working
numerical format from floating- to fixed-point and the word length from 64- or 32-bit
to 16- or even 8-bit precision [97]. By reducing the word length, precision is com-
promised to gain the advantage of a smaller memory footprint and smaller hardware
components and buses through which the data travels from memory to the arithmetic
units. On the other hand, changing the numerical format from floating- to fixed-point
significantly reduces the range of representable values, increasing the potential for the
under/overflow of the data types.

There are other approaches apart from floating- and fixed-point arithmetics that
are worth mentioning: posit arithmetic [72] is a completely new format proposed to
replace floating-point format and is based on the principles of interval arithmetic;
bfloat16, with hardware support in recent Intel processors [36], is simply a single
precision floating-point format (binary32 [22]) with the 16 bottom bits dropped for
hardware and memory efficiency; and various approaches for improving floating-point
arithmetic using, for example, the logarithmic number system in which multiplication
becomes addition [98], and dynamically-sized exponent and significand fields which
optimize the relative accuracy of the floating-point format in some specific range of
real numbers rather than having the same relative accuracy across the whole range
[99].

When considering low-precision arithmetics, it is worth comparing fixed-point and
floating-point hardware costs. It was reported, to cite a few examples, that a 32-bit
integer adder uses 9× less energy [26] than a binary32 floating-point adder. A differ-
ent study also reported 30× lower area [100] (but note that the energy improvement
in this study is unclear and not related to 9× speedup from [26]). As well as reducing
the precision and choosing a numerical format with a smaller area and energy foot-
print, mixed-precision arithmetic [101], stochastic arithmetic [39] and approximate
arithmetic [28] have also been explored in the machine learning community with the
goal of further reducing the energy and memory requirements of accelerators. Mixed-
precision and stochastic techniques help to address precision loss when short word
length numerical formats are chosen for the inputs and outputs to a hardware accel-
erator. Mixed-precision arithmetic maintains intermediate results in formats different
from the input and output data, whereas stochastic arithmetic works by using proba-
bilistic rounding to balance out the errors of different signs that accumulate in various
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algorithms. Approximate arithmetic (or more generally approximate computing) is a
recent trend which applies the philosophy of adding some level of (application toler-
ant) error at the software or inside the arithmetic circuits to reduce energy and area
with minimum damage to the application’s performance.

Interestingly, similar ideas have been explored in other areas, with one notable ex-
ample being at the birth of the digital audio revolution where the concept of dither

became an important contribution for improving the quality of digital audio systems
[102, 103]. Similarly, an approximate dithering adder, which alternates between direc-
tions of error bounds to compensate for individual errors in the accumulation operation,
has been demonstrated [104].

The main motivation for using stochastic rounding can be seen when thinking
about a basic summation of rounded values, for example continuously adding val-
ues in high precision to a value held in lower precision, a situation which can arise
in various places where arithmetic operations involved in some algorithms provide
results in higher precision than the destination variable and is precisely the situation
that arises in the ODE solvers for the Izhikevich neuron on SpiNNaker. For exam-
ple, let’s assume four computations that output a number 0.25 in high precision which
has to be rounded before accumulating into the result of lower precision, just an in-
teger. This situation is too simple to arise in any practical scenario but is a useful
demonstration. A standard round to nearest scheme would provide a result like this:
result = RN(0.25)+RN(0.25)+RN(0.25)+RN(0.25) = 0, which has an error of 1.
On the other hand, SR, which rounds up with a probability (in this case 1 out of 4
times) proportional to the residual (value of the trailing bits after the rounding bit)
might give: result = SR(0.25)+SR(0.25)+SR(0.25)+SR(0.25) = 1, which has an
error of 0. It is also possible to get as a result 0, 2, 3 or 4, but the probability of this hap-
pening is smaller. An ODE solver is doing something similar at larger scale — multiple
high precision values are produced on each step from multiplications, which are either
added together or multiplied further before finally being added to the previous value
in lower precision and the distribution of residuals from some of the multiplications is
biased due to various constants.

The main contributions in this chapter are as follows.

• The accuracies of ODE solvers for the Izhikevich neuron are assessed using
different rounding routines applied to operations on fixed-point formats. This
builds on earlier work where the accuracy of fixed-point ODE solvers was inves-
tigated for this model [14], but where the role of rounding was not addressed.
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• Fixed-point ODE solvers with stochastic rounding (SR) are shown to be more
robust than with other rounding algorithms, and are shown experimentally to be
more accurate than binary32 floating-point ODE solvers (Section 4.4).

• 6 bits in the residual and random number are shown to be sufficient for improving
the accuracy of ODE solvers with SR (Section 4.4).

• A hardware unit for stochastic rounding and saturation of 64/32-bit values is
proposed for SpiNNaker2 and evaluated in synthesis.

4.2 Related work

This section reviews some of the papers that explore fixed-point ODE solvers and
stochastic rounding applications in machine learning and neuromorphic hardware.

4.2.1 Fixed-point ordinary differential equation solvers

The most recent work that explores fixed-point ODE solvers on SpiNNaker [15], al-
ready discussed in Chapter 3, demonstrates a few important issues with the default
GCC s16.15 fixed-point arithmetic when used in the Izhikevich neuron model. The au-
thors tested the current sPyNNaker software framework [53] for simulating the Izhike-
vich neuron and then demonstrated a method for comparing the network statistics of
two forward Euler solvers at smaller time steps using a custom fixed-point format of
s8.23 for one of the constants. Some other observations about this study are as follows.

• The iterative use of forward Euler solvers with small time steps is far from op-
timal in terms of the three key measures of accuracy, stability and computa-
tional efficiency. Regarding the latter, it seems that the proposed solver is ap-
proximately 10x slower than the RK2 Midpoint solver explored by Hopkins and
Furber [14].

• The choice of the s8.23 format to improve the accuracy of the constant 0.04
could be replaced with the u0.32 format and appropriate mixed-format arith-
metic operations could be used for any constants smaller than 1; u0.32 × s16.15
multiplication is supported by GCC as discussed in Chapter 3 but can also be per-
formed very efficiently using a single multiply instruction (reminder: the s16.15
answer is the top register of the two registers that ARM returns, if no rounding
is required).
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• Rounding is not explored as a possible improvement in the conversion of con-
stants and arithmetic operations and neither is the provision of an explicit con-
stant for the nearest value that can be represented in the underlying arithmetic
format.

4.2.2 Stochastic rounding

Randomization of rounding can be traced back as early as the 1950s [105]. Further-
more, a similar idea was also explored in the context of the CESTAC [106, 107] method
where a program is run multiple times, making random perturbations of the last bit of
the result of each elementary operation and then taking a mean to compute the final
results (for more information see [23, p. 486] and references therein).

In [40] the authors investigate the effects of probabilistic rounding in backprop-
agation algorithms. Three different applications are shown with varying degrees of
precision in the internal calculations of the backpropagation algorithms. It is demon-
strated that when fewer than 12 bits are used, training of the neural network starts
to fail due to weight updates being too small to be captured by limited precision arith-
metic, resulting in underflow in most of the updates. To alleviate this, the authors apply
probabilistic rounding in some of the arithmetic operations inside the backpropagation
algorithm and show that the neural network can then perform well for word widths as
small as 4 bits. It is concluded that with probabilistic rounding, the 12-bit version of
their algorithm performs as well as a binary32 floating-point version.

In a more recent paper [39] about SR (and similarly in [108]), the authors demon-
strate how the error resiliency of neural networks in deep learning can be used to allow
reduced precision arithmetic to be employed instead of using the standard 32/64-bit
formats and operations. The authors describe a simple matrix multiplier array built of
many multiply-accumulate units that multiply two 16-bit arguments and accumulate
the results in full-precision (implementing an exact dot product operation). Further-
more, they show that applying SR when converting the result of the dot product into
lower 16-bit precision improves the neural network’s training and testing accuracy.
The accuracy with a standard round to nearest routine is demonstrated to be very poor
while stochastic rounding results are shown to be almost equal in accuracy to the same
neural network using binary32 floating-point format.

A very important result from this study is that 32-bit fixed-point formats can be
reduced to 16 bits and maintain neural network’s accuracy, provided that SR is applied.
This reduction in precision allows for smaller and more energy efficient arithmetic
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circuits and reduced memory requirements in neural network accelerators. However,
this study did not report the effects of variation in the neural network results due to
stochastic rounding — as applications using SR become stochastic themselves it is
important to report both mean benchmark results and the variation across many trial
runs. A recent paper from IBM [109] also explores the use of the 8-bit floating-point
format with mixed-precision in various parts of the architecture, and applies stochastic
rounding. A similar accuracy to the binary32 format in training neural networks is
demonstrated.

Closely related to the work above, the effects of training recurrent neural networks,
used in deep learning applications, on analogue resistive processing units (RPUs) have
been studied [110]. The aim is to minimize the analogue hardware requirements by
looking for a minimum number of bits that the input arguments to the analogue parts of
the circuit can have. A baseline model with 5-bit input resolution is first demonstrated
and it becomes significantly unstable (in terms of neural network training error getting
larger) as network size is increased, compared to a simulation model with binary32
floating-point arithmetic.

The authors then increased the input resolution to 7 bits (with rounding to nearest
reported on this version, not mentioned on the baseline version) and observed a much
more regular development of the training error and with lower magnitude at the last
training cycle. Finally, it is shown that stochastically rounding the inputs to 5 bits again
makes the training error almost as stable as the 7-bit version without the large error
observed when using the baseline version for training large networks. It is important
to observe that differently from any other reported results that utilized SR, here SR is
applied on the inputs to the application, therefore in a sense randomizing the data to
improve the accuracy of the algorithm.

In neuromorphic computing SR is used on the Intel Loihi neuromorphic chip [13].
Here SR is not applied to the ODE of the neuron model as it is in this study, but to the
biological learning rule — STDP — that defines how synapses change with spiking
activity (Section 3.3.2). The implementation of STDP usually requires spike history
traces to be maintained for some number of timesteps. In Loihi, history traces (for
each synapse) are held as 7-bit values to minimize memory cost and calculated with
SR as x[t] = α× x[t− 1] +β× s[t], where α is a decay factor which defines how the
trace decays back to 0 between spikes and β is a value contributed by each spike.
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Algorithm 3 Stochastic rounding by comparison
function SATSR INT64 INT32(X ,n)

P← PRNG32()
MASK← ((1� n)−1)
P← P&MASK
RESIDUAL← X&MASK
X ← X � n
if P < RESIDUAL then

X ← X +1
if X > MAX INT32 then

return MAX INT32
if X < MIN INT32 then

return MIN INT32
return X

4.3 Implementing stochastic rounding

The initial goal is to implement and test fixed-point SR arithmetic operations with
various input and output formats, including nonhomogeneous (mixed-format) config-
urations.

4.3.1 Implementation

As demonstrated in Section 2.1.4, stochastic rounding can be implemented by inspect-
ing residuals and utilizing a PRNG. For a fully configurable stochastic rounding routine
we have to be able to round a specified number of bits n of a 64-bit number. This means
that bits n− 1 to 0 are zeroed and 0x1 is added at the n-th bit location if rounding is
performed. Usually there is no need to return the rounded value in the original bit
width with bottom bits zeroed, therefore an output number from the rounding routine
is usually provided in lower precision, at which point it also has to be saturated to that
smaller precision if the value is too large to be represented. For SpiNNaker use cases
we are interested in rounding a 32-bit multiplication result (which is 64 bits) to some
32-bit fixed-point format, therefore an algorithm and implementation for this routine
was explored.

There are at least two ways to round a value stochastically: by comparing a random
number to the residual and rounding up if it is smaller, or by adding a random number
to the residual and letting the carry out from that control rounding. Algorithms 3 and 4
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Algorithm 4 Stochastic rounding by addition
function SATSR INT64 INT32(X ,n)

P← PRNG32()
P← P&((1� n)−1)
X ← (X +P)� n
if X > MAX INT32 then

return MAX INT32
if X < MIN INT32 then

return MIN INT32
return X

Algorithm 5 Rounding to nearest with round up on a tie
function SATRN INT64 INT32(X ,n)

X ← (X +(1� (n−1)))� n
if X > MAX INT32 then

return MAX INT32
if X < MIN INT32 then

return MIN INT32
return X

demonstrate how to do both. Stochastic rounding by addition looks shorter, but both al-
gorithms require 5 operations in the main rounding parts (saturation is the same in both
cases). Saturation logic is self explanatory and it is worth noting that if the input and
output numbers are unsigned, we would have to perform only one comparison instead
of two. Also it is worth noting that rounding to nearest can be implemented similarly
to Algorithm 4 as shown in the Algorithm 5. By comparing Algorithms 4 and 5, no-
tice that SR has an overhead of a PRNG plus one extra operation. Depending on the
optimization level and whether rounding is inlined or not, these algorithms might be
compiled for a fixed shifting n and therefore optimized on compilation for specific use
cases.

For testing the Izhikevich neuron ODE, a configurable multiplication routine was
developed which always performs saturation but can be configured globally to either
do round down, round to nearest or round stochastically. There are 5 cases of interest
(with 5 equivalent cases for 16-bit numerical formats):

• s16.15× s16.15→ s16.15 (n = 15),

• s16.15× s0.31→ s16.15 (n = 31),

• s16.15×u0.32→ s16.15 (n = 32),
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Figure 4.1: Histograms showing the error distribution of 50000 random s16.15 ×
s16.15 operations with different rounding schemes. RD, RN and SR are round down,
round to nearest and stochastic rounding respectively.

• u0.32×u032→ s0.31 (n = 33), and

• u0.32× s0.31→ s0.31 (n = 32).

All these are configured by passing a different constant n into a variant of Algorithm 4
after the multiplication result is obtained. Only the first multiplication requires satura-
tion check. In the case where n = 33, the answer is pre-shifted right by 1 step before
rounding to avoid difficulties with a 33 bit residual (if we are strict, this requires a
33-bit random number, which is probably unnecessary and requires two registers to be
operated on).

4.3.2 Testing multiplication

To establish the correctness of different rounding routines for fixed-point formats it
is useful to carry out tests to assess the distribution of errors from a set of multiply
operations with a wide range of randomly generated inputs. To test this, 50000 random
numbers distributed uniformly between a minimum and maximum value are taken,
making sure that the output does not saturate, to evaluate only the rounding error.
Each pair of operands is generated as numbers that can be exactly represented in the
relevant fixed-point format and then converted to binary64 so there is no error in the
inputs. Multiplications in fixed-point and binary64 are then performed. The fixed-
point result is converted to binary64 and the difference is multiplied by 1

ε
to obtain

error in units of least precision.
Figure 4.1 shows the error distributions of the s16.15 × s16.15 multiplier with the

three different rounding routines. As expected, multiplication results from a range of
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randomly chosen input values have uniformly distributed residuals and therefore RD
and RN show this in rounding error. However, SR has a triangular distribution — as
the errors become larger, fewer numbers are assigned to having that error, which shows
a correct property of stochastic rounding which works on a principle of rounding oc-

casionally incorrectly (incorrectly — not to the nearest value). And how occasionally
it does that for a given number is proportional to the residual that has to be rounded.
For example, results that should have an error of 0.1, when SR is enabled are some-
times rounded incorrectly into the other direction, producing an error of -0.9, hence
this triangular distribution.

4.3.3 Testing in summation

The main advantages of SR can be detected in summing algorithms, where round-
ing errors biased into one direction dominate the final error in the result of the sum.
Following the approach taken by Higham and Pranesh [111] harmonic series was run
which is a divergent series but converges when implemented in limited precision arith-
metic [112]. The series is defined as ∑

∞
i=1 1/i = 1+ 1

2 +
1
3 ... — it can be seen that

the addends are getting smaller while the total sum keeps increasing and as Higham
and Pranesh [111] reported the sum converges in floating-point arithmetic when the
addends become small enough that they do not change the total sum anymore (due to
very different exponents and round off error on addition). In another paper Blanchard
et al. [113] calls this a stagnation problem which happens in summing algorithms in
floating-point arithmetic.

This experiment was run in 32- and 16-bit fixed-point arithmetic. The sum has a
numerical format s16.15 or s8.7 and is initialized to 1. Then the series is started from
i = 2 and the division is done in either 32-bit or 16-bit fractional format u0.32 or u0.16
and the addend is rounded to the sum’s format with various rounding routines.

Table 4.1 demonstrates the results with three floating-point formats and various
fixed-point formats. 5 million iterations were chosen to have a manageable run time,
but the number of iterations to convergence is also reported. As expected, most of the
fixed-point formats converge as soon as the addends in the series become small enough
to be evaluated at lower than s16.15 precision, when the values cross 0.5ε. However, it
can be seen that fixed-point with SR can accurately replicate the sum of the binary64
format in 5 million iterations without converging. Given that stochastic rounding is
probabilistic rounding, it might still produce some effect in later iterations stochasti-
cally and therefore it can be said that it never converges — there is a diminishing, but
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Table 4.1: Iterations until convergence of the harmonic series for different arithmetics.
Sums and errors relative to binary64 (double-precision floating-point) at 5 millionth it-
eration are reported. Floating-point data is from Higham and Pranesh [111]. Averaged
sums are from running the experiment 50 times in s16.15 and s8.7 SR arithmetics.

Arithmetic Sum at i = 5×106 Error at i = 5×106 Iterations to converge

binary64 16.002 0 2.81...×1014

binary32 15.404 0.598 2097152
binary16 7.086 8.916 513

s16.15 RN 11.938 4.064 65537
s16.15 RD 10.553 5.449 32769
s8.7 RN 6.414 9.588 257
s8.7 RD 5.039063 10.963 129

s16.15 SR Mean = 16.002 −0.000135765 232 +1(50 runs) std.dev.= 0.012

s8.7 SR Mean = 11.205
4.797 216 +1(50 runs) std.dev.= 0.242

non-zero probability of rounding up the addends and affecting the sum. In practice it
converges also when the numerical format of the addends runs out of bits and the prob-
ability of rounding up becomes 0. This can also happen if there is a limited number of
random bits available for performing stochastic rounding.

4.3.4 Pseudo-random number generators

The reference PRNG is a version of Marsaglia’s KISS64 algorithm [114]. This has had
several versions — SpiNNaker’s default implementation uses a version called KISS99
[115]. As discussed more in Hopkins et al. [33] this generator passed some very chal-
lenging tests and is considered of high quality. Results with SR presented here have
also been checked using faster PRNGs that fail these challenging tests but which are
considered to be of a good basic quality for non-critical applications. In reducing order
of sophistication these are a 33-bit LFSR algorithm implemented within the SpiNNaker
base runtime library sark, and a very simple linear congruential algorithm with a setup
which is given in [116, p. 284] where it is called ranqd1. No significant differences in
either mean or standard deviation of the results presented in the following section were
found which indicates that SR, at least on this application, is insensitive to the choice
of PRNG as long as it meets some quality standard (this is open for further research).
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4.4 Ordinary differential equation solvers

The solution of ODEs is an important part of mathematical modelling in computa-
tional neuroscience. In this study the primary interest is in solving ODEs for neuron
behaviour though they can also be used for synapses and other more complex elements
of the wider connected network such as gap junctions or neurotransmitter concentra-
tions. Many of the neuron models that we are interested in are formally hybrid systems

in that they exhibit both continuous and discrete behaviour. As a reminder of the
Izhikevich neuron model in Section 3.1, the continuous behaviour is defined by the
time evolution of the internal variables describing the state of the neuron and the dis-
crete behaviour is described by a threshold being crossed, a spike triggered followed
by a reset of the internal state, and then sometimes a refractory period set in motion
whereby the neuron is temporarily unavailable for further state variable evolution.

4.4.1 Algorithmic error and arithmetic error

In the original study Hopkins and Furber [14] most focused on algorithmic error, ex-
ploring how closely a chosen ODE solver can match output from the reference imple-
mentation. This algorithmic error is created by the inability of a less accurate ODE
solver method to match the reference result (assuming infinite precision arithmetic).
As the output in this kind of ODE model is best described as the time evolution of the
state variable(s) it is by no means easy to formulate a measure that allows direct com-
parisons to be made. Hopkins and Furber [14] used spike lag/lead relative to a chosen
reference as that is the main data of interest to neural modellers and is easy to observe
and measure and the same measurement was used in Chapter 3 and in this study as
well.

It should be carefully noted that in this chapter, as well as in the previous, the arith-

metic error is the main point of interest. An ODE solver is chosen and the reference for
comparing different arithmetics is the same ODE solver calculated in IEEE binary64
floating-point arithmetic. So the purpose of this study is different from the original
investigation by Hopkins and Furber [14] — the goal is not to compare different ODE
solvers to a more advanced Mathematica solver, but to compare different arithmetics
and rounding modes using the same solvers. The chosen algorithm for solving an ODE
is imperfect but it is a realistic use case on which to test the different arithmetics that
are of interest.
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4.4.2 Results from applying stochastic rounding

This section presents the results from four different ODE solvers with fixed-point arith-
metic and stochastic rounding added on each multiplier, at the stage where the multi-
plier holds the answer in full precision and has to truncate it into the destination format,
as described in Section 2.1.4.

Results below are from testing four different fixed-timestep algorithms to demon-
strate some generality. In increasing order of complexity and execution time these
are two 2nd order and one 3rd order fixed-timestep Runge-Kutta algorithms (see for
example [117]) and a variant of the Chan-Tsai algorithm described in [118]. All are
implemented by Hopkins and Furber [14] using the ESR (explicit solver reduction) ap-
proach described by the authors where the combination of ODE definition and solver
mechanism are combined and “unrolled” into an equivalent algebraic solution which
can then be manipulated to be optimised for speed and accuracy of implementation
using the fixed-point formats available. Hopkins and Furber [14] mainly focused on
1 ms timestep and the Chapter 3 in this work focused on both 1 ms and 0.1 ms time
steps. In this chapter only 0.1 ms timestep was used for simplicity and because 0.1 ms
is generally becoming more of interest for this neuron model and across different parts
of neural simulation.

A combination of more accurate representation of the constants, mixed-format
multiplication and implementation of RN mode demonstrated in Chapter 3 has sig-
nificantly reduced the error in the fixed-point solution of the Izhikevich neuron model
from what was previously reported [14]. Therefore, all the results below with RD on
the multipliers do not reproduce the results from the previous study [14] because these
new results are generated with more precise constants as well as some reordering of
arithmetic operations in the originally reported ODE solvers to keep the intermediate
values in s0.31 and u0.32 formats as long as possible.

The experiments were run on the Spin3 board, which contains 4 SpiNNaker chips
with ARM968 cores which were used to test the ODE solvers.

4.4.2.1 Neuron spike timings

To test ODE solvers and different arithmetics, the same approach is taken here to stim-
ulate the neuron as in Chapter 3 plus a new type of neuron (with a different set of
parameters) is added. This is a constant DC input of ∼4.775 nA for the RS and Fast
Spiking (FS) neurons (as defined by Izhikevich [75]) originally chosen by Hopkins and
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Figure 4.2: Spike lags of the neuron in DC input test at 0.1 ms timestep. Spike lags
are computed against the binary64 floating-point reference in each case. SR result is
shown as the mean from 100 runs with shaded area showing the standard deviation. A
negative value on the Y axis indicates a lead, a positive value indicates a lag.
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Table 4.2: Summary of ODE results: spike lags (ms) of the 650th spike in the DC input
test. Positive means lag, negative — lead. Fixed, {RD/RN/SR} refers to fixed-point
arithmetic with round down, round to nearest and stochastic rounding respectively.

Solver Neuron type binary32 fixed, RD fixed, RN fixed, SR (std.dev.)

RK2
Midpoint

RS 16.8 -131.4 1.9 4.3 (2.62)
FS -29.7 -10.0 33.7 -2.3 (3.16)

RK2
Trapezoid

RS 6.9 -172.7 -2.1 -1.2 (2.30)
FS -3.2 18.7 -40.1 2.3 (3.33)

RK3
Heun

RS -7.1 -206.9 26.0 -4.0 (1.59)
FS 29.4 -53.6 31.4 -4.4 (3.10)

Chan-
Tsai

RS -9.0 -356.3 -67.9 0.8 (1.60)
FS -21.7 -44.6 -5.1 1.4 (3.10)

Furber [14] and subsequently used by Trensch et al. [15]. The results for 4 different
solvers are shown in Figure 4.2 with the exact spike lags of the last, 650th spike, shown
in Table 4.2.

Because the SR causes spike times to be slightly different on every run of the test,
if a different pseudo-random number stream is used each time, it has to be taken into
account when generating results. Producing a single set of spike times from one run is
not enough anymore as in Chapter 3. This has been done by running the ODE solver
100 times with a different random number stream and recording spike times on each
run. From this data the mean and standard deviation of this distribution is calculated.
Standard deviation in Figure 4.2 is shown as a shaded area around the SR mean curve.

From the plots and last spike statistics the SR results are very accurate in all cases
compared to the alternatives, and in 7 out of the 8 cases are closest to the arithmetic
reference after 650 spikes (∼1 min of simulation). Note that the RK2 Midpoint, RS
neuron test case, used in Chapter 3, is also visible here for a much longer run time.
As was shown in that chapter, fixed-point RN and binary32 were performing almost as
well as binary64 floating-point arithmetic. However, from this longer run it becomes
clear that surprisingly, while fixed-point RN continues to be quite close to binary64,
binary32 starts accumulating error approximately after 100th spike. Also, notice how
RK2 Midpoint performance changes when the RS neuron is replaced with the FS neu-
ron — in this case both fixed-point RN and binary32 perform poorly. As a matter of
interest, the RK2 Trapezoid algorithm found to produce the most accurate solutions at
1 ms without correct rounding of constants or multiplications demonstrated by Hopkins
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Figure 4.3: The membrane potential of a neuron producing a third spike in the DC
current test, using RK2 Midpoint solver with various arithmetics and rounding modes.
The temporal difference between the Mathematica and binary64 floating-point arith-
metic spike times is algorithmic error and the temporal gap between (for example)
fixed-point RD and binary64 is arithmetic error. Fixed, {RD/RN/SR} refers to fixed-
point arithmetic with round down, round to nearest and stochastic rounding respec-
tively.

and Furber [14] continues to provide a good performance here in terms of arithmetic
error, producing mean spike time errors of only −1.2 ms and 2.3 ms for the RS and FS
neuron models after 69 and 165 seconds of simulation time respectively, and is quite a
bit faster than the third-order solvers.

In general, all of these results demonstrate that when SR is used with fixed-point
arithmetic, ODE solvers become robust to changing the neuron parameters. Other
arithmetics in most cases start producing more lag when the neuron type is switched.
The same can be said of changing the ODE algorithm — SR is always close to binary64
floating-point arithmetic irrespective of which solver is used while other arithmetics do
well in one solver and do poorly in another solver.

4.4.2.2 Evolution of membrane potential V

As an illustration of the imperfect evolution of the underlying state variables in the
Izhikevich ODE, Figure 4.3 shows the progression of the V state variable (the mem-
brane potential of the neuron) after 300 ms for a variety of solver/arithmetic combina-
tions and 0.1ms timestep. One spike and reset event is shown in each case.

The absolute algorithmic reference given by Mathematica is shown in purple. The
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significant spike time lead given by RD is shown in the light blue line. The other re-
sults show a slight lag relative to the absolute reference, and all are very close to the
arithmetic reference in orange. The SR result shows the mean with the standard devi-
ation error bars because it contains 100 random results. The large standard deviation
at the spike event and increased standard deviation near it is caused by spikes in some
runs out of 100 being reset or having spiked at this timestep.

4.4.2.3 The effects of reduced comparator precision in SR

To build an efficient hardware unit to perform SR it is useful to consider how many bits
are required in the SR algorithm. There are two ways to implement SR as shown in
Section 4.3: the first is to directly build a comparator between the residual of the num-
ber to be rounded

(x−bxc
ε

)
and the random number (as in (2.6)); another approach that

is equivalent, implemented by Gupta et al. [39] in an FPGA to optimize the utilization
of the DSP units, was to add the random number to the input number and then truncate
the fraction. This reverses (2.6) in such a way that the random numbers that are higher
than or equal to 1−

(x−bxc
ε

)
will produce a carry into the result bits (round up) and the

numbers that are lower will not produce a carry (which will result in round down due
to binary truncation). The first approach has a comparator of the remainder’s/random
number’s width plus an adder after truncation of the remainder, whereas the second
approach has only a single adder of the full word width. Whichever approach is used,
the hardware cost of the adder/comparator could be reduced by defining a minimum
number of bits required in the residual x−bxc

ε
and the random number.

To explore this problem in the ODE test bench used above, a series of ODE solvers
solving two types of the Izhikevich neuron were run and the effects on the spike lag
different number of bits in SR had were measured. The results are shown in Figure 4.4.
These results can be compared to the numbers in Table 4.2 where all the available bits
were used in SR. Note that the fixed-point multipliers in the ODE solvers can use 15
or 32 bits in SR, depending on the formats of arguments. It is clear that as we decrease
from 12 to 6 bits in the SR, the degradation in quality of lead or lag relative to the
arithmetic reference is negligible. However, when the number of bits is decreased from
6 to 4 and fewer, the RS neuron starts to lead with a very high spike timing difference
of the 650th spike. Given these two tests on RS and FS neuron, it is concluded that
4-bit SR is acceptable, with some degradation in quality of the neuron model, whereas
6-bit version performs as well as the 12-bit or full remainder length SR version (15 or
32 bits).
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Figure 4.4: Average spike lags of the 650th spike with the standard deviation from
100 runs. Four solvers with two different neuron types each are shown for varying
numbers of bits in the stochastic rounding comparison step. All versions are compared
to an equivalent reference solver implemented in binary64 floating-point arithmetic
(the dotted straight line at y = 0 ms).

4.4.2.4 16-bit arithmetic formats

Using the same constant DC current test applied to a neuron as in Section 4.4.2.1, 16-
bit numerical formats for this problem were evaluated. The results with 16-bit ISO
standard [34] fixed-point formats in the two second-order ODE solvers are shown in
Table 4.3. Because most of the variables are now held in s8.7 numerical format, with
7 bits in the fractional part, even SR performs quite badly. However, it is clearly better
than RD and RN, with RD causing neuron to lag in spike times the most and RN
being subject to underflow in one of the variables that causes updates to the main state
variable to become 0, and therefore no spikes are produced. It seems that SR helps the
ODE solver to recover from underflow and produce more reasonable answers with a
certain amount of lag.

It is likely that custom 16-bit data types used within the solver for key interim
variables (for example by scaling the 16-bit variables relative to a maximum known
value) would improve this performance further. Most importantly if overflows in the
adders can be avoided by rearranging the operations or adding saturation to reduce the
error caused by a wrap-around of the 8 integer bits in s8.7. This is a good tradeoff
between performance and accuracy where some spike lag is acceptable and smaller
memory footprint and datapath width is a priority.
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Table 4.3: Summary of ODE results with 16-bit fixed-point arithmetic compared to a
binary64 floating-point reference (with the constants represented in 16 bits): spike lags
(ms) of the 650th spike in the DC current test. Positive means lag, negative — lead.
The test cases marked with a dash did not produce any spikes due to underflow in one
of the internal calculations. Fixed, {RD/RN/SR} refer to fixed-point arithmetic with
round down, round to nearest and stochastic rounding respectively.

Solver Neuron type binary32 fixed, RD fixed, RN fixed, SR (std.dev.)

RK2
Midpoint

RS 16.8 -21681.4 - 889.4 (58.82)
FS -29.7 -2754.5 686.4 676.7 (30.67)

RK2
Trapezoid

RS 6.9 -22786.2 - 363.3 (57.65)
FS -4.6 -2391.2 892.8 516.7 (27.92)

4.5 Round and saturate accelerator for SpiNNaker2

Here an accelerator for rounding and saturation is described and evaluated. This accel-
erator is included in the SpiNNaker2 prototype chip JIB2 which is currently in design.
Most of the material is reproduced from a preprint paper that has been published online
[119].

4.5.1 Motivation

SpiNNaker2 will be based on an ARM Cortex-M4F processor, which does not have a
capability of rounding a fixed-point number to a specified number of bits. There are
three instructions with rounding available: SMMLAR — multiply two numbers, add a
third number to the top 32-bits of the result and return the rounded 32 top bits; SMMLSR
— the same as SMMLAR, but subtracts the third argument; SMMULR — multiply and re-
turn rounded 32 top bits of the result [62]. Rounding is done by adding 0x80000000
to the product, therefore the tie-breaking rule is round up [120]. While this would
work well for s16.15 × u0.32 multiplications, it is limited in terms of other different
mixed-format multiplications discussed in Chapter 3. To implement round to nearest
and stochastic rounding would therefore require multiple instructions to perform Algo-
rithms 3 and 5 on two registers. Furthermore, there is no mention as to whether these
instructions perform saturation after rounding. While saturation instructions for 32-bit
values with configurable saturation bit position and saturated addition are available on
the M4F, saturating a 64-bit value from the multiplication would need to be done by
comparison and because it is a value across two registers, multiple instructions would
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be required to obtain a rounded and saturated value somewhere in the middle of a 64-
bit value. Due to this, it is proposed to include a small memory mapped accelerator
to perform rounding and saturation of 64- and 32-bit values, which reuses an already
existent PRNG hardware unit on SpiNNaker2.

4.5.2 Specification

The rounding and saturation accelerator is a memory mapped unit, connected through
an Advanced High-Performance Bus (AHB) bus — a set of memory addresses are al-
located for different rounding routines and numerical formats, to which arguments are
written and from which the rounded values are read out. For rounding multiplication
results, it is useful to have a 64-bit to 32-bit number rounding, with configurable round-
ing bit position from 0 to 31. Given that the ARM M4F processor has 32-bit wide inter-
faces, two memory cycles are required for inputting 64-bit arguments through AHB.
For other cases, for example rounding weight updates which might be 32 bits or 16
bits, 32-bit to 32-bit, 32-bit to 16-bit, and 16-bit to 16-bit round and saturate is sup-
ported. For this, one memory cycle is required for input, therefore, assuming one cycle
for the main part of rounding, the accelerator will either have a 4 or 3 cycle delay for a
write-round-read operation for 64/32-bit arguments respectively.

Both signed and unsigned numerical formats should be supported, given a wide
range of use cases for both shown in this thesis. Furthermore, as the ARM M4F has
binary32 floating-point hardware support, it might be beneficial to round binary32 to
bfloat16 (16-bit single precision floating-point format with sign, 8 exponent and 7 sig-
nificant bits). This format can be useful for representing synaptic weights for example,
which can be operated on using the binary32 FPU by inputting bfloat16 weights into
the top 16 bits of the FPU registers. Finally, given that an adder is required in stochas-
tic rounding, we can also implement round to nearest, which can reuse the adder to add
0x1 shifted to the appropriate bit position.

4.5.3 Design

Figure 4.5 gives an architectural diagram for performing a similar stochastic rounding
and saturation algorithm to Algorithm 4. Signals signed arithmetic and round mode

are derived from the address supplied by the AHB bus, depending on which address
was written by the processor.

The main mechanism is to pick the top 32 bits of the residual depending on the
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configuration register, which is set up beforehand and contains the number of bits to
round — 0 to 31 (0 means round 1 bit, 31 means round 32 bits). Then, the 32 bits after
these residual bits are also isolated which is an unrounded result at this point. The
minimum number of bits to round is 1, therefore the data input is extended to the right
by 31 bits to support Verilog’s base minus 32 bit slicing functionality. For the same
reason the input data is extended by 32 bits to the left, to check for overflow by bit
wise logic on the top 32 bits outside the main result that will be rounded and extracted.

The register named PRNG is filled in by reading the next 32-bit random number
from the existent SpiNNaker2 PRNG. The pseudo-random number is added to the
residual and the carry bit c out is captured from that. Then, depending on the round

mode, either the top bit (in case of round to nearest) or the c out (in case of stochastic
rounding) is added to the unrounded result which performs round up if it is 1 and round
down if it is 0. Finally the rounded result and the overflow bits are used to saturate the
result if required.

4.5.4 Evaluation

The main logical path of the accelerator contains two adders — one 32-bit wide for
rounding and one 8-, 16- or 32-bit wide for the stochastic rounding part when a random
number is added to the residual. The architectural diagram in Figure 4.5 demonstrates
a 32-bit version, but it is worth evaluating the three versions as there is some evidence
that not all of the 32 bits are needed in SR, as shown in Section 4.4.2.3. All of the
logic, except some saturation checks are performed in a single cycle. Saturation logic
contains basic checks of the overflow flags depending on the address input from the
AHB bus and in the current implementation it is done on the AHB output cycle.

A synthesis study of the presented design was executed using the makeChip hosted
design service platform [121] for the GLOBALFOUNDRIES 22FDX technology [122]
for which the SpiNNaker2 chip is being developed. An ultra-low voltage 8t-CNRX

standard-cell library with multiple voltage threshold options is used for implementa-
tion. The standard cells use the adaptive body biasing (ABB) technique for post-silicon
adaptation of transistor threshold voltage [123, 124]. Namely, two main categories
of cells are used: Low-Voltage Threshold (LVT) and Super-Low-Voltage Threshold
(SLVT) cells — the former with the larger propagation delay but significantly less leak-
age than the latter, much faster, cells. A nominal supply voltage of 0.50V is considered
for low power operation. Due to manufacturing variations, synthesis is performed in a
worst case speed condition at 0.45V and −40 °C. Three versions of the accelerator are



4.5. ROUND AND SATURATE ACCELERATOR FOR SPINNAKER2 107

50 100 150 200 250 300 350 400

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Clock frequency constraint fclk (MHz)

A
re

a
(n

or
m

al
iz

ed
)

8-bit SR
16-bit SR
32-bit SR

Figure 4.6: Circuit area of the accelerator when synthesised with different clock con-
straints. Three accelerator versions are shown with 8-, 16- and 32-bit stochastic round-
ing.

50 100 150 200 250 300 350 400

100

101

102

103

Clock frequency constraint fclk (MHz)

L
ea

ka
ge

(n
or

m
al

iz
ed

,l
og

sc
al

e)

8-bit SR
16-bit SR
32-bit SR

Figure 4.7: Leakage power of the accelerator when synthesised with different clock
constraints. Three accelerator versions are shown with 8-, 16- and 32-bit stochastic
rounding.



108 CHAPTER 4. STOCHASTIC ROUNDING

synthesised varying the clock frequency constraint

fclk = {50,100,150,200,250,300,350,400}MHz,

and leakage power as well as area are measured.

Figure 4.6 shows comparison of the three accelerators for different clock con-
straints and Figure 4.7 shows leakage power. From this data it can be seen that at
low clock frequencies, the adder’s width can save some area and leakage, but at higher
frequencies other costs dominate and the savings are not that evident anymore. Espe-
cially for leakage; the leakage of the circuit apart from the adder dominates the total
and changing to a smaller adder does not produce significant changes.

Figure 4.8 shows an accelerator highlighted in a layout of a single PE. The area of
the accelerator is estimated at 1004 µm2.

4.6 Discussion and further work

This chapter addressed the numerical accuracy issues of ODE solvers in fixed-point
arithmetic, solving a well known neuron model in fixed- and floating-point arithmetics.
Before, in Chapter 3, it was identified that the constants in the Izhikevich neuron model
should be specified explicitly by using the nearest representable number as the GCC
fixed-point implementation does round down in decimal to fixed-point conversion by
default (this was also independently noticed by another study [15] but authors there
chose to increase precision of the numerical format of the constants instead of round-
ing the constants to the nearest representable value as in this work). Next, all of the
constants smaller than 1 were stored in the u0.32 format instead of keeping everything
in s16.15, to maximize the accuracy. This required the routines for mixed-precision
arithmetic operations to be developed. This has not been done in any of the previous
studies exploring numerical accuracy of this neuron model on SpiNNaker [14, 15]. Jin
et al. [76] went in this direction using 16-bit formats and two different scaling factors
with mixed-precision arithmetic, but no comprehensive analysis of the 32-bit numeri-
cal formats and rounding was performed. Jin et al. [76] focused on 16-bit for efficiency,
considering the Euler method for ODE solver at instruction level. Therefore, this work
should complement work by Jin et al. [76] more in terms of numerical accuracy.

Chapter 3 demonstrated very accurate results on the default SpiNNaker ODE solver
and one configuration of the neuron, however, as identified in this chapter, changing
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Figure 4.8: Layout of a PE after place and route. Cells marked ...macro bundled at
north-west corner are local memory. The rest of the cells at the south-east corner
belong to an ARM M4F based PE. Out of that, cells highlighted in white belong to the
rounding accelerator (without the PRNG). Picture provided by Stefan Scholze.
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the neuron parameters or the ODE solver algorithm can result in very different numer-
ical errors. It was then identified that fixed-point multiplications are the main remain-
ing source of arithmetic error and explored different rounding schemes. Stochastic
rounding on multiplication results was subsequently shown to produce substantial ac-
curacy improvements across four ODE solvers and two neuron types. Fixed-point with
stochastic rounding was shown to perform better than fixed-point RN and binary32
floating-point format, and the mean behaviour is very close to binary64 floating-point
ODE solvers in terms of spike times. It was also shown that simple PRNGs will often
be good enough for SR to perform well. The minimum number of bits required in the
random number in SR was found to be 6 across four different ODE solvers and two
neuron types tested. In these cases, using more bits is unnecessary, and using fewer
will cause the neuron timing to lead compared to the reference.

In Section 4.4.2.4 16-bit arithmetic results were shown to have advantages with
SR. Although the absolute performance is quite poor (most likely due to overflows
and underflows), 16-bit results with SR perform better than 16-bit RD (which largely
results in spike time lead) and RN (which produces no spikes). Further work using
scaled interim variables to ameliorate these issues is likely to provide further gains.

Furthermore, in the paper that was published with this work [33] a concept of dither

was applied where the input current of the neuron has added noise. It was shown that
this has also reduced the spike lags in the majority of cases explored in this chapter; in
the case where it works as well as SR this can be a computationally cheaper alternative
to stochastic rounding (no random number generation on each multiplier in the ODE
solver).

While an extensive investigation of the speed of ODE solvers was out of the scope
of this work, measurements in the test bench show that SR performance is mainly
dictated by the PRNG performance. Preliminary numbers from RK2 Midpoint ODE
solver performance benchmarks show an overhead of approximately 30 % when RN is
replaced with SR. Furthermore, SR is ∼ 2.6× faster than software-emulated binary32
floating-point and ∼ 4.2× faster than binary64 arithmetic in running a single ODE
integration step. In terms of SpiNNaker2, while it will have a binary32 FPU, the results
in this chapter demonstrate that fixed-point with SR can be more accurate, and in most
of the cases as accurate as binary64 floating-point arithmetic on average, and should
be considered instead of simply choosing binary32 in a given application (especially
noticing how much error binary32 arithmetic can accumulate in some tests visible in
Figure 4.2).
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For future work, it would be useful to perform mathematical analysis to understand
better why SR is causing fewer rounding errors in ODEs. For performance, explore
how many random numbers are needed in each ODE integration step — do we re-
quire all multipliers to use a separate random number, or is it enough to use one per
integration step? Also, for SpiNNaker neuromorphic applications, it would be use-
ful to build fast arithmetic libraries with SR and measure their overhead compared to
default fixed-point arithmetic and various classical ways of rounding. Also, investi-
gating the application of SR in neuron models other than Izhikevich’s, and ways to
solve them, the first example being LIF with current synapses which has a closed-form
solution. Another direction is to investigate fixed-point arithmetic with SR in solv-
ing partial differential equations (PDEs) and other iterative algorithms (for example
in linear algebra). Finally, it would be beneficial to investigate SR in reduced pre-
cision floating-point: binary16 and bfloat16 numerical formats which are becoming
increasingly common in the machine learning and numerical algorithms communities,
for large-scale projects such as climate simulations using PDEs [27, 125].

Given all of these results, there is some indication (although more research is re-
quired) that any reduced precision computing platform solving ODEs and running
other similar algorithms involving long summation will benefit from using stochas-
tic rounding. This has been showed here experimentally in harmonic sum and ODE
solvers. It is also useful to point out that different arithmetics have different places
where SR could be applied. For example, unlike fixed-point adders, floating-point
adders and subtracters need to round when exponents do not match, and SR could be
applied there after the addition has taken place (which would require preserving the
bottom bits after matching the exponents). Similarly in neural learning, where the
computed changes to a weight are often smaller than the lowest representable value of
that weight. The application of stochastic rounding in solving ODEs has not yet been
investigated on any digital arithmetic, and these are the first results demonstrating sub-
stantial numerical error reduction in fixed-point arithmetic.

4.7 Conclusion

Improvements to the numerical accuracy with stochastic rounding, of certain applica-
tions demonstrated by machine learning community, indicated that it could be applied
more widely, in this case on SpiNNaker applications. The most well known exam-
ple of SR is given by Gupta et al. [39], demonstrating a neural network training and
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performing a digit recognition task in fixed-point 16-bit formats, performing well and
competing with binary32 floating-point equivalent application, only when stochastic
rounding is applied on the outputs from the multiply-accumulate units. The goal of
this chapter was to identify areas where SR could be useful on SpiNNaker, itself work-
ing mainly in fixed-point arithmetic, and to compare the numerical errors with the state
of the art SpiNNaker software [14, 53]. SR libraries were developed, shown to work
well in harmonic series run in fixed-point and were shown to reduce error in the Izhike-
vich neuron model — one of the most used neuron models that can be configured to
change the spiking patterns.

While results were already improved by correct rounding of constants and mixed-
precision multiplications addressed in the previous chapter, SR provides robustness
across different neuron spiking types and different ODE solvers, which is not the
case with RN, even with the improvements from the previous chapter. The results
were shown to be important for numerical accuracy — ODE solvers in 32-bit fixed-
point arithmetic with SR have less neuron spiking lag than the equivalent floating-
point solvers in most of the tested cases. Therefore, the main goal of the chapter
was achieved with very positive results, even showing promise beyond SpiNNaker use
cases to affect any low power computer solving ODEs in fixed-point arithmetic. Given
these results, it was then straightforward to make a decision that SpiNNaker2 should
include a small rounding unit to perform rounding faster than possible in software. An
accelerator was designed and evaluated and will be included in the SpiNNaker2 chip,
giving, for a small cost of chip area and leakage power, a very substantial improvement
in certain numerical algorithms.

The next chapter of the thesis moves on from the neuron models and rounding, and
addresses an accelerator for computing exponential function which is used in a wide
array of neuron and plasticity models.
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Chapter 5

Hardware ex and loge(x) Function
Accelerator for SpiNNaker2

Exponential function is required in most parts of neural and plasticity models. On the

current generation SpiNNaker machine, this function has been evaluated either using

look-up tables stored in memory or by calling a software implementation which takes

around hundred cycles to run. In this chapter a hardware exponential function for

SpiNNaker2 in fixed- and floating-point arithmetic formats is developed and evalu-

ated. A particular chosen algorithm permits the addition of a logarithm function with

most of the logic shared between the two. Having both ex and loge can be beneficial

for implementing the general exponentiation function, required for example in certain

plasticity models. The accelerator is developed in a 22nm SpiNNaker2 environment

and the fixed-point version was included in the recently manufactured SpiNNaker2

prototype chip (codenamed JIB1). The final version documented here, with improved

accuracy and a floating-point interface, is currently planned to be included in the next

SpiNNaker2 prototype chip (JIB2). This chapter shows the algorithms, numerical ac-

curacy, chip area and energy utilization of the accelerator, as well as ways to use the

accelerator in mixed-format precision with different controllable accuracies.

Some sections in this chapter are reproduced from the material that was published

as part of the proceedings of the 25th IEEE symposium on computer arithmetic [126].

5.1 Introduction

One of the most common functions in SNNs is ex, used to model exponentially de-
caying quantities. Most neuron models [14] and biological learning, STDP rules

113
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[9, 127, 128], developed on SpiNNaker all use exponential decay. In ARM software it
is hard to realise a very fast implementation of this function — it requires large LUTs
(with values in higher precision than input/output) and the usual latency is 60–200
clock cycles, depending on the numerical format and accuracy required (see [129] for
the performance analysis on x86 architectures and see [130] for ARM example). Due
to this, it is important to consider dedicating silicon for the exponential function in a
digital neuromorphic chip.

In the current SpiNNaker chip there is no hardware support for transcendental func-
tions, including exponentials, so the models developed use pre-computed LUTs; this is
described in detail in Section 3.3.5.1 (also see [131]). However, this approach has two
limitations: a limited number of time constants and a limited input domain are available
due to the size of on-chip memory, and in the case of a model that requires time con-
stants to be dependent on some dynamic quantity, such as the voltage-dependent time
constants in the intrinsic currents of the well known Hodgkin-Huxley neuron model and
its variants [132], the number of look-up tables required for each possible value that
the time constant can take would be too large to store in the local SpiNNaker memory.
The memory requirements are further increased if the simulation time step is 0.1 ms,
which is rarely used on SpiNNaker at the moment, but in all likelihood will be used on
SpiNNaker2 as it will give more accuracy in all parts of simulation. In this scenario,
the size of LUTs for the same amount of time of decay look-up will grow 10 times,
if every possible entry is stored. For example, modelling a 16-bit exponential decay
e−

∆t
τx for 1 second and all the values that ∆t can take at 0.1 ms simulation time step

will require 20 kB of memory space. Although note that these tables can always be
made smaller with certain side effects, such as reduced numerical accuracy depending
on how coarse/fine the table is or a requirement to add interpolation to approximate a
function between the entries in the table — all of this can be done to optimize the table
for a specific problem.

A software exponential is also available in the SpiNNaker software library, but
with a latency of approximately 95 clock cycles, it would be a major limit to real-time
synaptic plasticity processing, where a single pair of spikes takes approximately 30 cy-
cles as reported by Knight and Furber [55]. When processing most learning rules, we
usually need more than one exponential per spike-pair processing. Learning rules re-
quiring 3 or more decay time constants have already started appearing in computational
neuroscience literature and some were already tried on SpiNNaker: see for example
voltage-dependent STDP [87] implemented on SpiNNaker [128], the BCPNN learning
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rule [9, 131] and the neuromodulated STDP [11] (demonstrated in Chapter 3) learning
rule.

Fixed-point data types s16.15, s0.31 and u0.32 are the main ones used in the SpiN-
Naker software stack for all neural and synapse models, and it is likely that in SpiN-
Naker2, for most of the performance sensitive code it will be preferred instead of the
FPU available in ARM M4F, especially when noting that special DSP instructions [62]
can be used on the fixed-point and not on the floating-point numbers. Although it
is possible to find optimal fixed-point formats for accuracy in any given application,
the choice was made to follow the fixed-point standard [34] and design the arithmetic
unit with the two main signed fixed-point formats: s16.15 and s0.31. Furthermore, to
maintain consistency of arithmetic capabilities available in ARM M4F, and in case a
need for floating-point exponential and logarithm functions presents itself in the future,
the floating-point (binary32) interface was also designed (for example, to model AdEx
neuron model [42, 43], which has not yet been done on SpiNNaker).

The most recent SpiNNaker2 chip prototype has a fully pipelined exponential unit
built in [59]. However, the implementation is limited to the standard fixed-point format
s16.15 which in most cases, where an exponential function is used to model exponen-
tial decay, has 16 unused integer bits in the outputs, as discussed in Section 3.2. Other
formats such as s0.31 could be useful to improve accuracy of models. For example Yan
et al. [21] did have to extend the exponential function in s16.15 with software floating-
point wrapper. Additionally, the design in [59] uses the identity ea+b+c = ea× eb× ec

to parallelize computation and therefore can be quite large in circuit area due to the
required multipliers.

Here a different implementation based on iterative shift-add algorithms is demon-
strated; these type of algorithms are usually considered to be slower due to serial de-
pendencies of the underlying equations but do not require multiplication, which can
reduce area of the circuit. The internal iterative part of the algorithm is performed in
fixed-point carry-save redundant number representation to reduce the critical path de-
lay (although a signed-digit [133] representation could also be used as shown by Muller
[16]). The accelerator was designed so that the two different fixed-point formats can
be mixed to gain more accuracy on some arguments. Furthermore, a useful intrinsic
property of the iterative algorithms is that after just a few iterations they already con-
tain the approximate output with correct bits at the top and some error at the bottom. It
was chosen to use this property to provide programmable accuracy control, following
the principles of approximate computing [28, 134, 135] (in this case approximation
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comes not from the errors in the circuit as is most common, but from not running the
maximum number of iterations of the algorithm) in order to add options for modellers
to sacrifice some accuracy in exponential decay and to tradeoff accuracy for speed and
energy where required. This property will provide a platform for experimenting with
concepts arising from the ongoing discussion about the number of bits required for
representing weights in STDP [136].

Most of the algorithms for performing elementary functions are categorised into
two types: polynomial approximations or convergence algorithms [16, 31]. For exam-
ple, the COordinate Rotation DIgital Computer (CORDIC) algorithm is a well known
shift-and-add (convergence) algorithm that can be used to evaluate a wide array of
functions [137]. However, as Bajard et al. [138] point out, CORDIC cannot easily be
implemented in a redundant number representation to avoid propagation of carries in
the iterative part of the design. For this work, a well-known convergence algorithm
presented by Muller [16, Ch. 8] was chosen; this algorithm provides exponential and
natural logarithm functions with overlapping hardware components (note that having
both of these functions we can also derive the equation for evaluating the power func-
tion as discussed in Section 5.4.2). Also see [139] for a review of the challenges that
this sequential algorithm presents — unfortunately this work did not present physical
implementation results. The implementation documented in this thesis is done in radix-
2, which means that one iteration of the algorithm calculates one bit of the function’s
output.

The unit is included in the prototype neuromorphic chip as an AHB slave that
can be driven from the ARM core by writing and reading the set of specific memory
locations, similarly to the implementation by Partzsch et al. [59]. Design synthesis
studies are executed on the makeChip hosted design service platform [121] for the
GLOBALFOUNDRIES 22FDX technology [122].

The rest of the chapter is structured as follows.

• The main algorithm for exponential (ex, further called exp) and natural logarithm
(loge(x), further called log or log(x) without the base) is analysed in detail in
Section 5.2.

• The architecture of the unit and implementation is documented in Section 5.3.

• Testing and accuracy analysis is discussed in Section 5.4.1.

• A synthesis study is discussed in Section 5.4.3, where the details of leakage
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power, and area for different versions of the accelerator at worst case timing
conditions are provided.

• Lastly, a place and route study is documented in Section 5.4.5 where more accu-
rate power measurements are reported when running software test cases at worst
case power conditions, and the proposed design is compared to similar designs
in the literature.

5.2 Algorithms

The iterative shift-and-add algorithm presented in [16, Ch. 8] is used for this acceler-
ator. The following is a brief description of the algorithms, first in general, and then
versions for the carry-save representation. In Sections 5.2.1 – 5.2.3 the algorithms are
reproduced from [16] and extended beyond the material in the book in Section 5.2.3.

5.2.1 Main iterative algorithm

The main algorithm consists of inputs t and N and the sequences tn and dn run for N

steps and defined as

t0 = 0,

tn+1 = tn +dnlog(1+2−n),
(5.1)

with

dn =

1 if tn + log(1+2−n)≤ t,

0 otherwise,
(5.2)

and that satisfy

lim
n→∞

tn = t =
∞

∑
n=0

dnlog(1+2−n). (5.3)

The sequence log(1+ 2−n) is a decreasing sequence (0.693..., 0.405..., 0.223..., . . . )
therefore on each step a new smaller value is added to tn (if tn + log(1+ 2−n) is still
below t) or not (if the sum would become larger than t).

Now a sequence En is defined such that at any step n of the algorithm

En = exp(tn). (5.4)

Since t0 = 0, E0 is initialised as 1. When dn = 1, log(1+2−n) is added to tn. As a result,
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to keep En consistent with the definition, En+1 = exp(tn+1) = exp(tn+ log(1+2−n)) =

exp(tn)exp(log(1+2−n)) = Enexp(log(1+2−n)) = En(1+2−n) = En+En2−n. Then,
to generalise for dn = {0,1} choice on each step we can write

En+1 = En +dnEn2−n. (5.5)

Note that this calculation requires only an adder and a shifter, since the multiplication
is by a power of 2. Then,

lim
n→∞

tn = t,

lim
n→∞

En = exp(t).
(5.6)

The algorithm convergence domain is

t ∈ [0,
∞

∑
n=0

log(1+2−n)≈ 1.56202...], (5.7)

and the relative error of approximating et by stopping iterating at step n is shown by
Muller [16] to be |et−En

et | ≤ 2−n+1 (which in terms of bits, means that there will be
n−1 or more correct significant bits — 2ulps of maximum error).

Another additional feature of this algorithm is that it can easily be transformed
to compute the natural logarithm function. Given an input x we want to compute
log(x) = t. What we are interested in now is that the sequence tn in (5.1) is converging
to the answer. However, in this case t is not known, as that is what we are looking for,
and thus cannot choose dn in (5.2). But what we do know is x = exp(t) (it is an input
argument) and since En in (5.5) was built in such a way that at any step n, En = exp(tn),
(5.2) is equivalent to

dn =

1 if En(1+2−n)≤ x,

0 otherwise.
(5.8)

Now by using (5.8) we will have the same choice of dn on each step as in the algorithm
for exponential, but since we do not need to know t in the choice of dn, we can in fact
compute it as tn converges to it. Additionally, as Equations 5.1 and 5.5 do not change
when converting exponential algorithm to the natural logarithm algorithm, we can re-

use the same hardware resources when implementing both algorithms. The algorithm
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convergence domain when it is used for natural logarithm as shown by Muller [16] is

x ∈ [1,
∞

∏
n=0

(1+2−n)≈ 4.768]. (5.9)

This part of the algorithm was presented because it is easy to understand how it
works in this form. The next two sections will show the faster versions of the algo-
rithms that are not straightforward without understanding the basic principles shown
in this section.

It is worth noting that these algorithms are not implemented straight into hardware
as written in this section as it would result in a slow critical path, especially on the
dn choice step. Noting that these algorithms are multiple decades old, it is possible
that modern logic synthesizers will spot that the algorithm can be done in carry-save
number representation, but it will almost certainly not find the improvements deeply
hidden in the mathematics of the algorithm and the number system that Muller [16]
demonstrates for the choice of dn and which will be explained next.

5.2.2 Algorithm for exponential in carry-save representation

To speed-up the algorithm in Section 5.2.1, the two additions in Equations 5.1 and 5.5
are done using carry-save adders (Chapter 2). Then, when the last iteration is computed
and we need to obtain the final answer, the value En or tn is converted, depending
on whether it is the exponential or logarithm function, from carry-save to a standard
non-redundant representation using a single carry-propagate adder. However, using
carry-save adders would not bring much advantage if, in the comparison operation in
Equations 5.2 and 5.8, we have to check the full word length value — it would result in
large comparator circuits and become a major bottleneck on every iteration. Because
of this, Muller [16] presents a restructured algorithm which requires a check of only 4
bits to do the comparison to find out dn on each step.

The basic iteration in (5.1) is changed to the following, which is simply reversing
convergence of tn so that Ln converges from x to 0 and moving dn inside the logarithm:

Ln+1 = Ln− log(1+dn2−n), (5.10)

with L0 = x, and

dn =

1 if Ln ≥ log(1+2−n),

0 otherwise.
(5.11)
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Series En remains the same:

En+1 = En +dnEn2−n. (5.12)

Then, if L0 = x is in the convergence domain t = x ∈ [0, 1.56202...], this gives

lim
n→∞

Ln = 0,

lim
n→∞

En = E0eL0.
(5.13)

At this step, Muller [16] adds another new change in the algorithm that brings
redundancy but allows the comparison step to be performed by examining fewer digits
(less than a full length of Ln). Instead of only allowing values of dn ∈ {0,1}, it is also
allowed to have dn =−1. Note that log(1−2−0) is not defined, so the evaluation starts
at iteration n = 1. Now the algorithm converges if

L1 ∈ [
∞

∑
n=1

log(1−2−n)≈−1.242...,

∞

∑
n=1

log(1+2−n)≈ 0.869...].
(5.14)

Define
L∗n = 2nLn, truncated after the first fractional digit.

Here Ln is in carry-save representation with digits 0 (002),1 (102 or 012) and 2 (112).
Now the choice of dn in (5.2) is transformed to

dn =


−1 if L∗n ≤−3/2,

0 if −1≤ L∗n ≤−1/2,

1 if L∗n ≥ 0.

(5.15)

Muller [16] showed that this choice of dn can be implemented by a look-up table in-
dexed by 1 fractional and 3 integer bits of L∗n (when converted to non-redundant repre-
sentation) and proved that it assures convergence of the algorithm, therefore speeding
up the comparison step and allowing the gains of using carry-save adders to be realised.

The algorithms presented so far are reproduced from Muller [16, Ch. 8] to give a
full account before the contribution of the next section. The next section starts with the
algorithm for logarithm and extends it beyond what was shown by Muller [16].



5.2. ALGORITHMS 121

5.2.3 Extending the algorithm for logarithm in carry-save repre-
sentation

A similar modification of the algorithm for log(x) in carry-save number representation
also has to be found in order for the comparison step, where the choice of dn is made,
to be faster. Such a modification is presented for signed-digit number representation by
Muller [16] but not for carry-save implementation. The steps to find it are very similar
to those used in the signed-digit representation of the algorithm and allowed to find a
working choice of dn for logarithm function.

We use the same iteration for En and Ln as before and initialise E1 = x, L1 = 0. As
pointed out by Muller [16] we notice that En× eLn is constant and if we find such a
sequence of dn values that would make En converge to 1, after n steps we would get
that En× eLn = eLn . Then we will have Ln → log(x). We need to find a sequence of
terms d that will give us this convergence in carry-save number representation, and
once again, without using large comparator circuits. Define

λn = En−1, (5.16)

and
λ
∗
n = 2n

λn, truncated after the first fractional digit. (5.17)

From this point on, the results are novel, since Muller [16] did not present a fast choice
of dn in carry-save. Using the property 0≤ 2nλn−λ∗n ≤ 1 and the properties obtained
from the Robertson diagram shown in [16, Sec. 8.3.2], it was found that for n≥ 2, the
choice of dn is

dn =


−1 if λ∗n ≥ 1/2,

0 if −1/2≤ λ∗n ≤ 0,

1 if λ∗n ≤−1.

(5.18)

Similarly to signed-digit number representation which is analysed in the book, this
choice of dn does not work at the first step n = 1 of the algorithm. However, noticing
that at the first step E1 is in non-redundant representation, and since λ1 = E1−1 only

changes bits in the integer part of the fixed-point value of E1, we can consider the

fractional part of λ1 to be in non-redundant representation, even though the integer
part might have both intermediate sums and carries set. This allows us to use the
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property 0≤ 2λ1−λ∗1 ≤ 1
2 , which then allows to find that the choice of d1 is

d1 =


−1 if λ∗1 ≥ 1,

0 if −1/2≤ λ∗1 ≤ 1/2,

1 if λ∗1 ≤−1,

(5.19)

which is only different from (5.18) in that when λ∗n = 1/2, we choose dn = 0 instead
of dn =−1, and therefore results in a simple special case for step one of the algorithm.
The algorithm converges in the domain, as shown by Muller [16],

E1 ∈ [0.4194..., 3.4627...]. (5.20)

Finally, with the basic iteration Equations 5.10 and 5.12, and the rules to choose
dn on each step of the algorithm in carry save representation using (5.15), (5.18), and
(5.19), we have a unified iterative algorithm for exponential and natural logarithm in
carry-save number representation. It was verified that this algorithm works with a
model implemented in C, which is discussed in the next section.

5.2.4 Simulating the algorithm in C

The algorithm presented above can easily be built in C by emulating the carry-save
number representation and all the required operations on such numbers. It is useful to
obtain a bit-level equivalent model to the hardware unit that will be built later, therefore
this is the main focus of this step. The resultant code for the model of this algorithm is
provided in Appendix C.

Some useful checks can be run to confirm correctness of the implementation of this
algorithm. Table 5.1 shows how the algorithm progresses on each step for the exponen-
tial function with x = 0.7, using a fixed-point representation with 35 fractional bits and
iterating for 32 steps. It can be seen that Ln is approaching 0 while En is converging to
the answer, at n = 32 returning an error of 0.000000000513... compared with math.h

exponential function. Table 5.2 shows a similar test for the logarithm with x = 0.65.
This time, En is converging to 1 while Ln is converging to the answer, returning at
n = 32 an error of 0.0000000000102... compared with the math.h logarithm function
in double precision.

Another useful test to do using the model is to check the convergence domains of
the functions shown previously in (5.14) and (5.20) for exp and log respectively. Such
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Table 5.1: Progress of the iterative shift-add algorithm when exp(0.7) is called in
fixed-point format with 35 fractional bits.

n En Ln dn

1 1.00000000000000000000 0.70000000001164153218 1
2 1.50000000000000000000 0.29453489190200343728 1
3 1.87500000000000000000 0.07139134057797491550 1
4 2.10937500000000000000 -0.04639169509755447507 0
5 2.10937500000000000000 -0.04639169509755447507 -1
6 2.04345703125000000000 -0.01464299680083058774 -1
7 2.01152801516582258046 0.00110536016291007400 1
8 2.02724307775497436523 -0.00667678029276430607 -1
9 2.01932415951159782708 -0.00276288099121302366 -1
10 2.01538016705308109522 -0.00080784616875462234 0
11 2.01538016705308109522 -0.00080784616875462234 -1
12 2.01439609474618919194 -0.00031944568036124110 -1
13 2.01390429885941557586 -0.00007527525303885341 0
14 2.01390429885941557586 -0.00007527525303885341 -1
15 2.01378137993742711842 -0.00001423823414370418 0
16 2.01378137993742711842 -0.00001423823414370418 0
17 2.01378137993742711842 -0.00001423823414370418 -1
18 2.01376601602532900870 -0.00000660881050862372 -1
19 2.01375833415659144521 -0.00000279411324299872 -1
20 2.01375449323677457869 -0.00000088676461018622 0
21 2.01375449323677457869 -0.00000088676461018622 -1
22 2.01375353304320015013 -0.00000040992745198309 -1
23 2.01375305294641293585 -0.00000017150887288153 -1
24 2.01375281292712315917 -0.00000005229958333075 0
25 2.01375281292712315917 -0.00000005229958333075 -1
26 2.01375275294412858784 -0.00000002249726094306 -1
27 2.01375272296718321741 -0.00000000759609974921 -1
28 2.01375270800781436265 -0.00000000014551915228 0
29 2.01375270800781436265 -0.00000000014551915228 0
30 2.01375270800781436265 -0.00000000014551915228 0
31 2.01375270800781436265 -0.00000000014551915228 0
32 2.01375270800781436265 -0.00000000014551915228 0
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Table 5.2: Progress of the iterative shift-add algorithm when log(0.65) is calculated in
fixed-point format with 35 fractional bits.

n En Ln dn

1 0.64999999999417923391 0.00000000000000000000 1
2 0.97499999997671693563 -0.40546510810963809490 0
3 0.97499999997671693563 -0.40546510810963809490 0
4 0.97499999997671693563 -0.40546510810963809490 0
5 0.97499999997671693563 -0.40546510810963809490 1
6 1.00546874996507540345 -0.43623676677816547453 0
7 1.00546874996507540345 -0.43623676677816547453 -1
8 0.99761352536734193563 -0.42839358933269977570 1
9 1.00151045317761600018 -0.43229222975787706673 -1
10 0.99955437809694558382 -0.43033719493541866541 1
11 1.00053050537826493382 -0.43131328091840259731 -1
12 1.00004196513327769935 -0.43082488043000921607 0
13 1.00004196513327769935 -0.43082488043000921607 0
14 1.00004196513327769935 -0.43082488043000921607 -1
15 0.99998092744499444962 -0.43076384341111406684 1
16 1.00001144441193901002 -0.43079436055268160999 -1
17 0.99999618547735735774 -0.43077910164720378816 1
18 1.00000381481368094683 -0.43078673104173503816 -1
19 1.00000000014551915228 -0.43078291634446941316 0
20 1.00000000014551915228 -0.43078291634446941316 0
21 1.00000000014551915228 -0.43078291634446941316 0
22 1.00000000014551915228 -0.43078291634446941316 0
23 1.00000000014551915228 -0.43078291634446941316 0
24 1.00000000014551915228 -0.43078291634446941316 0
25 1.00000000014551915228 -0.43078291634446941316 0
26 1.00000000014551915228 -0.43078291634446941316 0
27 1.00000000014551915228 -0.43078291634446941316 0
28 1.00000000014551915228 -0.43078291634446941316 0
29 1.00000000014551915228 -0.43078291634446941316 0
30 1.00000000014551915228 -0.43078291634446941316 0
31 1.00000000014551915228 -0.43078291634446941316 0
32 1.00000000014551915228 -0.43078291634446941316 -1
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Figure 5.1: Sweep over the exponential function for x ∈ [−1.5, 1.2] using the C model
of the iterative algorithm presented above (solid line) and the math.h binary64 expo-
nential function (dotted). Vertical dashed lines mark the convergence domain of the
iterative exponential function algorithm shown in (5.14).
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Figure 5.2: Sweep over the logarithm function for x ∈ [0.1, 3.8] using the C model
of the iterative algorithm presented above (solid line) and math.h binary64 logarithm
function (dotted). Vertical dashed lines mark the convergence domain of the iterative
logarithm function algorithm shown in (5.20).
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tests are demonstrated for exponential and logarithm in Figures 5.1 and 5.2 which
allowed to confirm that the convergence domains dictated by the algorithms are in fact
correct in the model — in the figures the model is visibly computing wrong answers
outside the domains compared to the reference function and correct answers inside the
domains.

5.2.5 Range reduction and reconstruction

The algorithm presented in Section 5.2.1 converges only when x is in a limited range,
which is inadequate for most of the use cases of exponential and logarithm functions.
To provide full-range functions for formats s16.15, s0.31, and binary32 we must first
perform range reduction, where x is transformed to some value inside the convergence
domain of the algorithm, then the function evaluated, and using the answer and the
information from the range reduction stage, range reconstruction is performed to get
the the final answer.

5.2.5.1 Exponential

If x is in the range shown in Table 5.3, find x′ and k such that x′ is in the convergence
range shown in (5.14) and expressed as

x′ = x− k× log(2). (5.21)

For the fixed-point exponential function, choosing the following works:

k = bx× 23
16
c. (5.22)

Note that 23
16 is around 0.4% smaller than 1

log(2) . This gives us, when considering the
range of possible arguments in s16.15 format (including ranges of mixed formats),
x′ ∈ [−0.0751..., 0.73069...]. For a wider range of inputs of exponential function in
binary32 floating-point, this choice of k does not work as it goes out of range due
to inaccuracy of 23/16. Therefore, for floating-point exponential, a more accurate
approximation of k = bx× 369

256c was found to produce x′ ∈ [−0.0917..., 0.771...]. The
multiplication k× log(2) has to be done in higher precision than the internal precision
of the iterative algorithm (which is s3.35 and is further discussed in Section 5.3.1).
Given that the maximum k for s16.15 input range is 15, 40 bits were chosen for this
multiplication, with 5 guard bits to assure that the top 35 fractional bits of the result
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Table 5.3: Approximate minimum and maximum ranges of values of exp with different
32 bit 2’s complement formats. ∗ — saturates to 0x0 below this input value; † —
saturates to 0x7FFFFFFF above this input value. The binary32 function either saturates
to 0 on underflow or infinity on overflow.

I/O formats exp input range exp output range

s16.15/s16.15 −10.397...∗ to 11.09...† 0.00003... to 65534.5...
s0.31/s0.31 −1 to (−2−31)† 0.367... to 0.99...
s16.15/s0.31 −21.487...∗ to (−2−15)† ∼ 2−31 to 0.99...
s0.31/s16.15 −1 to 1−2−31 0.367... to ∼ e
binary32/binary32 −103.278... to 88.722... ∼ 2−149(sub.) to ∼ 3.403×1038

are error free. The constant log(2) is held as a negative value, therefore (5.21) is an
addition and since x′ is a range reduced result going into the carry-save representation
used in the iterative algorithm, x can be assigned to the intermediate sums and −k×
log(2) to the intermediate carries, in effect obtaining x′ without actually performing
the addition.1

The range reconstruction is done as follows:

exp(x) = exp(x′+ k× log(2)) = 2k× exp(x′). (5.23)

Because x′ is in the range of the convergence domain shown in (5.14), exp(x′) can be
calculated using the iterative algorithm and then the final result in the full range just by
shifting exp(x′) by k places. In total, range reduction for exponential requires only mul-
tipliers by constant ((5.21) and (5.22)). Note that for evaluating (5.23) for fixed-point
outputs, a shifter with k∈ [−31, 15] will be needed (whereas floating-point requires the
exponent to be set to k plus or minus any shifting steps required to normalize exp(x′),
known by utilizing a Count Leading Zeros (CLZ) module).

5.2.5.2 Logarithm

If x is in the range demonstrated in Table 5.4, find x′ ∈ [1
2 ,1] such that

x′ =
x
2k . (5.24)

1Note that the internal representation of s3.35 cannot store x and −k× log(2) fully as it can be up to
∼ 11 for fixed-point and ∼ 88 for floating-point, but as we know that this is a subtraction of two very
close values that will produce a small value x′ that will fit into this representation, the top bits can be
safely ignored.
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Table 5.4: Approximate minimum and maximum ranges of values of loge operation
with different 32 bit 2’s complement formats. ‡ — saturates to 0x80000000 below this
input value; † — saturates to 0x7FFFFFFF above this input value. Full positive range
of floating-point representable values is legal.

I/O formats log input range log output range

s16.15/s16.15 2−15 to 216−2−15 −10.397... to 11.09...
s0.31/s0.31 0.367...‡ to 0.99... −0.99... to ∼−2−31

s16.15/s0.31 0.367...‡ to ∼ e† −1 to 0.99...
s0.31/s16.15 2−31 to 0.99... −21.487... to 0
binary32/binary32 ∼ 2−149(sub.) to ∼ 3.403×1038 −103.278... to 88.722...

If x is in fixed-point representation, we can find k by counting the leading zeros of
x. For the normalized floating-point values, we can instead find x′ ∈ [1, 2) by just
taking the significand and attaching “1” at MSB and making k = exponent. If the input
is denormal, the significand has to be normalized to obtain x′ and then k has to be
appropriately decreased by the number of leading zeros.

When we have x′ which is reduced to the convergence domain shown in (5.20),
we can calculate the natural logarithm log(x′) using the iterative algorithm presented
previously. Then the result in the full range of x can be reconstructed as

log(x) = log(x′)+ log(2k) = log(x′)+ k× log(2). (5.25)

A well known issue in floating-point arithmetic with this range reduction approach
is when x is very close to 1, as pointed out, for example, by Wong and Goto [140], De-
trey et al. [141], and Langhammer and Pasca [142]. For some small value ε, if x= 1−ε,
we will have an exponent of −1 and a significand of 2−2ε and the logarithm will be
computed using (5.25) as log(2− 2ε)− log(2). Because the two numbers subtracted
are so close to each other, we will get a very small value out of this operation. Then,
when we want to construct a significand for a floating-point answer, this small value
stored in some internal fixed-point representation will have to be shifted left to normal-
ize, propagating zeros at the bottom of the significand. This will cause what is called
catastrophic cancellation, causing large errors for x very close and below 1.

Following the approach outlined by Detrey et al. [141], the transformation of x′

is done: if x′ ∈ [1.5,2) (which is chosen for efficiency reasons, requiring only the
check of one bit in the significand), then x′ = x′

2 and k = exponent + 1. This error-
free transformation causes x′ ∈ [0.75, 1.5) which avoids the problematic case. Note



5.3. IMPLEMENTATION 129

that other authors use
√

2 instead of 1.5 to make this decision, which gives a range of
possible outputs from the first term of (5.25) more centered around 0. In this work a
choice was made to use a less expensive check of a single bit of the significand.

To summarize, in total range reduction and reconstruction for a natural logarithm
requires a CLZ module and a shifter (5.24) as well as a multiplier by constant and an
adder (5.25). For floating-point also needed are a CLZ module, a shifter at the end
to normalize the answer and a 2’s complement module to convert negative fixed-point
answers to positive when constructing the significand from the internal fixed-point
representation.

5.3 Implementation

This section shows how to implement the algorithm presented in Section 5.2.2 in hard-
ware. First it is demonstrated how to implement a single iteration, which can then be
instantiated an arbitrary number of times in a parameterized Verilog module. Then a
top level architecture to drive the main block of iterations is shown.

5.3.1 Initial implementation considerations

The main considerations at the initial stage of implementation are as follows.

1. Maximum number of iterations supported.

2. Internal fixed-point precision and bits in the integer parts, in which the iterative
algorithm works.

3. Related to both points above, precision and dimension of the log(1+ dn× 2n)

tables that are stored.

Since the fixed-point format used on SpiNNaker is s16.15, mainly due to balanced
range and precision, as well as being supported by GCC and standardized, this is the
main format that will be focused on making accurate enough in the exp-log accelerator.
According to this format, the decisions of the above three points are made to achieve 1
LSB/ulp (absolute error smaller or equal to 2−15) and then the error with other numer-
ical formats is accepted even if higher than that, in order not to complicate the design
further.

For the first item, the maximum number of iterations of the algorithm supported,
a simple approach is to choose 32, given that we are working with 32-bit numerical
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formats and knowing that the algorithm at each iteration finds roughly one bit of the
answer. This also directly impacts how many clock cycles it will take to compute the
function, therefore anything more than 32 is probably too slow and anything less will
reduce the maximum supported accuracy. This also means that the two tables required
for log(1+dn×2n) have to be stored for up to n = 32.

When that is fixed at 32, an internal representation has to be chosen. This is a fixed-
point format which will store En and Ln while the algorithm is iterating and modifying
those variables. This will also decide the precision of the constants log(1+dn×2n) in
the look-up tables. Once again the C model of the algorithm can be used to experimen-
tally find the minimum numbers of bits required. By aiming for 1ulp accuracy in the
range x ∈ [−10.397..., 11.09...] for the s16.15 numerical format exponential function,
it was found that the minimum size of the fractional part has to be 35 bits. It was also
found that to gain more accuracy, the look-up table entries for log(1+dn×2n) should
not be rounded but truncated to the format with 35 bits, as then it produces a lower
maximum error over the full range.

Finally, the internal representation should have a sign bit, for working with negative
values as well as 3 integer bits, which is enough when looking at the range reduced
inputs x′ and the maximum values that the iterative function can generate from those
inputs and is a minimum requisite for the choice of dn in the iterative algorithm as
discussed by Muller [16]. For logarithm this will also be suitable as the main source
of error in (5.25) comes from the iterative part.

To summarize, an internal representation with a sign bit, 3 bits for integer and 35
bits for fraction — s3.35 — is chosen to obtain close to 1ulp accuracy for exponential
and logarithm in the s16.15 format.

5.3.2 Single iteration unit

In Figure 5.3 a hardware unit for a single iteration step of the iterative algorithm,
computing exponential or logarithm, is shown. The inputs are En and Ln, and the output
is an update of these variables as per Equations 5.10 and 5.12. All three possibilities
for progressing En+1 and Ln+1 are calculated in parallel:

• En+1 = En and Ln+1 = Ln when d = 0,

• En+1 = En +En2−n and Ln+1 = Ln− log(1+2−n) when dn = 1, and

• En+1 = En−En2−n and Ln+1 = Ln− log(1−2−n) when dn =−1.
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Figure 5.3: Architecture of a single iteration of the algorithm presented in Sec-
tion 5.2.2. The internal representation is a 39-bit 2’s complement carry-save. Dot-
ted lines show carry-save busses that are made from two 39-bit busses for interme-
diate carry and intermediate sum. Solid lines are busses for binary numbers in non-
redundant representation. Units labelled [3:2] are carry-save adders (Section 2.1.5)
that add a carry-save number with a number in a standard non-redundant representa-
tion. Units labelled [4:2] function as two [3:2] carry-save adders (note that these units
have two carry-in inputs which are used to sign-invert a carry-save number on the left
side of the image). However, rather than chaining two [3:2] adders to make a [4:2], a
fast algorithm presented in [31, p. 123] was used. Signal exp not log is used to choose
whether it should calculate truncated L∗n or λ∗n for the choice of dn.
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Here dn is calculated in the middle path of the circuit, as per (5.15), (5.18), and (5.19).
At the bottom are two 3:1 multiplexers that correspond to different operations on En

and Ln depending on the value dn ∈ {0,1,−1}, that choose the correct updates for the
subsequent iteration.

It can be seen from the circuit that it has 7 different paths running almost inde-
pendently in parallel. It was found that the middle part, where we calculate truncated
L∗n or λ∗n (exponential or logarithm accordingly, as in Table 5.5) and choose the value
dn, is a critical path of this unit. To improve this path, value dn was implemented as
a one-bit-hot pattern [0012, 0102, 1002] instead of the actual 2-bit values [0, 1, −1],
which allows the bottom multiplexers to be faster.

Another slow component on this path is the 4-bit carry-propagate adder in the mid-
dle which is used to calculate the non-redundant representation of the truncated L∗n or
λ∗n. This adder was split into two 2-bit adders run in parallel, one returning a 2-bit result
and another adding lower bits returning a 2-bit result with carry-out. Then, this 5-bit
value was used in the dn look-up table. Because two 2-bit adders can run in parallel,
this also gave a small improvement on the critical path. To save space, a 4-bit look-up
table for dn in Table 5.5 is provided, but it is straightforward to generate one for 5-bit
values.

Table 5.5 shows how the choice of dn can be made by considering only 4 digits of Ln

or En−1= λn. Based on the limits of L∗n and λ∗n provided by Muller [16], the 4 digits of
the truncated values were tied to the choice of dn outlined in (5.15), (5.18), and (5.19).
Only one truncated value for logarithm cannot be tied to one single possibility for the
value that the full width λ∗n would have. However, based on the limits provided by
Muller [16] and an exhaustive sweep of the convergence domain using the C model
of the algorithm, it was found that this combination never appears, therefore it can be
ignored.

The table also shows some choices in bold font, which mark the choices that
appear in the convergence domains of our specific case of range reduction, which
are narrower than the full convergence domain of the algorithms (in our case x′ ∈
[−0.0917..., 0.771...] for exponential, and x′ ∈ [0.5, 1.5] for logarithm). This observa-
tion could provide some improvement to the critical path as only 3 digits would have to
be checked for making the choice of dn on each step. However, all further evaluation
of this hardware unit is done with the full table implementation for generality, as it
would be required, for example, when implementing binary64 functions, which would
most likely result in wider ranges of x′.
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Table 5.5: Look-up table for the choice of dn on each step of the iterative algorithm
for exponential and logarithm, addressed by L̂∗n or λ̂∗n which is L∗n or λ∗n truncated to 3
integer and 1 fractional bits in carry-save representation, and then added with a 4-bit
adder to convert to a non-redundant representation. Since one bit at the top is lost for
optimization of this LUT, the values are tied to the values of L∗n and λ∗n (which then
allows us to choose dn that will assure convergence) using the bounds shown by Muller
[16]. Note that when λ̂∗n = 10102 we cannot know whether λn =−3 or λn = 5 without
the extra bit, however, this does not matter as it was found, using the C model, that this
combination never appears in the convergence domain of the log function. Choice of dn
for exp is as derived by Muller [16] and derived here for logarithm using the limits of
λn shown by Muller [16] and the choices for dn found in Section 5.2.3. Values marked
with a dash are impossible based on the bounds and choices of dn, and the ones in bold
are the options that appear in the reduced range of x′ discussed in Section 5.2.5.

L̂∗n/λ̂∗n in binary L∗n in decimal λ∗n in decimal dn if exp dn if log

00002 0.0 0.0 1 0
00012 0.5 0.5 1 -1 (0 if n = 1)
00102 1.0 1.0 1 -1
00112 1.5 1.5 1 -1
01002 2.0 2.0 - -1
01012 2.5 2.5 - -1
01102 3.0 3.0 - -1
01112 3.5 3.5 - -1
10002 −4.0 4.0 - -1
10012 −3.5 4.5 - -1
10102 −3.0 −3.0 or 5 -1 -
10112 −2.5 −2.5 -1 1
11002 −2.0 −2.0 -1 1
11012 −1.5 −1.5 -1 1
11102 −1.0 −1.0 0 1
11112 −0.5 −0.5 0 0
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5.3.3 Main architecture

The previous subsection showed how to build a hardware module of a single iteration
of the algorithm discussed in Section 5.2.2. Now, define integer I 6= 0 as the number
of such iterations instantiated and connected in series and Ncycles as the number of
clock cycles to iterate through those I iterations. Note that if I > 1 then Ncycles 6= N,
where N ≤ 32 is the algorithmic iterations defined in Section 5.2.1. Figure 5.4 shows
the top level architecture that has I = 2 iterations instantiated and runs them in a loop
as controlled by a software-programmable parameter 0 < Ncycles ≤ 32

I = 16 giving
N = I ·Ncycles = 2Ncycles algorithm iterations.

First of all, 32-bit data is taken from the bus when available and sent through data
preprocessing, which includes such things as converting floating-point input to fixed-
point and separating various different parts of the floating-point input. Then range
reduction is performed (Section 5.2.5) in the second clock cycle, at which point E0

and L0 are calculated in carry-save representation and will be used in the next cy-
cle. To obtain full 32-bit accuracy, range reduction is performed in higher precision
than the internal representation of s3.35. Then, the range reduced value is passed into
the next clock cycle to start the main calculation using the iterative algorithm, which
runs for Ncycles cycles, a parameter that is preprogrammed. By default Ncycles = 16,
which gives N = 32 algorithm iterations in total. Each iteration sub-unit keeps track
of the iteration number that it is running which is used to index the log tables for
log(1 + dn2−n) when calculating (5.10). For example, iteration block 1 is running
iterations with n1 ∈ {1,3,5,7,9,11,13,15,17, . . .} and iteration block 2 is running it-
erations with n2 ∈ {2,4,6,8,10,12,14,16,18, . . .}.

Finally, on the last clock cycle, range reconstruction is performed as shown in
the previous sections. In the end, the result is read out to the bus in s16.15, s0.31
fixed-point, or binary32 floating-point format (when this is binary32, an extra cycle is
required to convert fixed-point answer to floating point). The format of the arguments,
number of iterations Ncycles, and whether the operation is exponential or logarithm are
defined by the different memory addresses allocated.

5.4 Results

This section will present various results obtained from the simulation and synthesis of
the presented accelerator: first, the numerical accuracy is evaluated using the Verilog
code in simulation, then synthesis is performed, and finally power is evaluated.
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Figure 5.4: The architecture of the iterative exponential and natural logarithm unit. The
number of cycles to iterate Ncycles is preprogrammed. Block “Log LUTs” represents
a function which outputs the corresponding log(1− 2−nk) and log(1+ 2−nk) values
depending on the iteration number nk that each iteration module is running.
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5.4.1 Accuracy and monotonicity

Accuracy and monotonicity of the exponential and logarithm functions are evaluated
in this section. Since it is useful to mix some fixed-point input and output formats,
both mixed and non-mixed formats are evaluated. Furthermore, the accelerator can be
configured beforehand to do a certain number of iterations depending on the accuracy
that is required, therefore accuracy and monotonicity is evaluated for multiple such
configurations.

In terms of the accuracy requirements for elementary functions, there are three
main standards that could help in making a decision of what should be our aim: the
ISO standard that includes fixed-point arithmetic [34], the IEEE 754-2019 floating-
point standard [22], and the OpenCL standard [143] that was used by Langhammer and
Pasca [142] for what is probably state-of-the art analysis of exponential and logarithm
designs on FPGAs. The first one specified 1 or 2ulp accuracy, depending on whether
the user requests accuracy or speed of operations. The second standard requires all
of the operations to be done as though they were performed in an infinite precision
arithmetic without any bounds on the range and then correctly rounded, which means
0.5ulp of maximum error — or always return the closest possible answer to the true
mathematical value, in a given numerical format. The last one, the OpenCL standard,
requires either 3ulp or 4ulp of accuracy for exponential and logarithm. In this work the
approach was taken, as mentioned before, of achieving 1ulp accuracy on the s16.15
exponential and not to increase the hardware resources if other numerical formats do
not meet this accuracy, hereby minimizing chip area and leakage costs.

There is also an interesting debate that can be had; neuromorphic applications are
unique and possibly these standards are too strict, especially the requirement of cor-
rectly rounded results which are required only because the standard must cover the
whole space of possible scientific computing applications that might be run on any
given system, and that usually have different sensitivities to the errors in arithmetic
operations. Correctly rounded arithmetics also help to do error analysis since only one
rounding error bound is required everywhere. Thus the standard has no alternative but
to enforce, on the designers of mathematical libraries and hardware units, to do the
best that is possible in a given numerical format. As there are no similar standards yet
developed for spiking neural network simulators, it is useful to have accuracy control
and be able to speed up simulations if some models appear to not require high accu-
racy on these elementary functions at least — this is in part the motivation for having
accuracy control in this accelerator.
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Regarding monotonicity, Muller [16] provides a definition and some useful formu-
lation, but a basic understanding comes down to the following: if a function is increas-
ing or decreasing over some interval, then the approximation in quantized arithmetic
should also be doing that. Assuming a monotonically increasing function f (x), if we
call it with a larger argument f (x+ ε), it must hold for all possible values x in some
given range that f (x+ ε)≥ f (x). This can be important in neuromorphic applications
to avoid bringing noise into the simulations — for example in modelling exponential
decay we do not desire a certain amount of time to decay a value less than anything
that is smaller than that amount of time. This property requires a more in-depth look
in the context of spiking neural networks, but this was out of scope of this study.

Rounding is not always helpful in all cases — depending on the internal represen-
tation and the function being implemented, rounding an approximated value can get
the answer even further from the exact answer. This can happen if the bits that are
being rounded are, in fact, not correct, because for example they are accumulated er-
rors while iterating that were shifted left on range reconstruction, especially if a small
number of iterations is chosen. Experimentally it was found that rounding was mak-
ing errors larger in s16.15 exponential, while in other formats and functions it was
helping to reduce the maximum errors. However, due to saving chip area and very
minor improvements to the errors that rounding adds in some cases, it was done only
in floating-point formats.

5.4.1.1 Accuracy of fixed-point exp and log

To measure the accuracy of the fixed-point formats of the unit and verify it over a wide
range of available arguments, a similar approach to that of Partzsch et al. [59] was taken
where the accelerator’s accuracy was compared to the double-precision (binary64)
floating-point exponential function of the C standard library math.h. This should be a
suitable reference since GCC estimates are that 1ulp accuracy is achieved for exponen-
tial and logarithm implementation on most of the supported platforms [144], although
a warning is given that due to a large search space the maximum errors reported might
not be from the exhaustive tests.

Given an argument x, calculate absolute error (with or without taking the absolute
value as required) with

∆exp = |exp′(x)− exp(x)|, (5.26)

where exp′ is hardware accelerator function and exp is math.h function exp(). By
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Table 5.6: Accuracy and monotonicity of exponential function for different numbers of
configured iterative clock cycles Ncycles, in the accelerator with 2 algorithm iterations
per clock cycle, and s16.15 input and output format. All results for exponential are
from exhaustive tests in the function domain whereas for log they are limited due to
the time it takes to exhaustively test this in Verilog simulation — only Ncycles = 16 is
exhaustive and others are from∼ 8M values uniformly distributed across the function’s
input domain. ulp = 2−15 = 0.000030517578125. Maximum error reported is rounded
up to the larger integer.

exp log

Ncycles Max error Average Monotonic Max error Average Monotonic

16 1 ulp 0.477 ulp Yes 2ulp 0.5ulp Yes
14 8 ulp 0.564 ulp Yes 2ulp 0.5ulp Yes
12 125 ulp 3.172 ulp Yes 2ulp 0.5ulp Yes
8 30044 ulp 693.33 ulp Yes 2ulp 0.56ulp No
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Figure 5.5: Accuracy of the s16.15 exponential accelerator with Ncycles = 16 cycles
set-up to iterate (every 160th value of the input domain is plotted).

sweeping through all possible s16.15 arguments for exponential, it was found that,
when the unit is configured to do 32 algorithmic iterations with Ncycles = 16 (number of
cycles to loop in the iterative part of the accelerator), all of the outputs had an absolute
error below 1ulp (2−15 = 0.000030517578125, the smallest value representable by
the LSB in s16.15 format), meaning that the result from the exponential hardware
accelerator is one of two neighbouring values of the binary64 floating-point reference.
By running a sweep over all values, it was also verified that the exponential function
at this accelerator configuration is monotonic.

For the natural logarithm function with Ncycles = 16 an exhaustive test of approx-
imately 2 billion samples across the range of possible inputs x ∈ [2−15, 65536) was
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Table 5.7: Accuracy and monotonicity of exponential and logarithm functions for dif-
ferent numbers of iterations Ncycles, in the accelerator with 2 algorithm iterations per
clock cycle, and s0.31 input and output format. Experiments with Ncycles = 16 are run
exhaustively over the function input domain. Other results are shown by using approx-
imately 5M input values uniformly distributed in the input domains of the functions.
ulp = 2−31 ≈ 0.000000000465. Maximum error reported is rounded up to the larger
integer.

exp log

Ncycles Max error Average Monotonic Max error Average Monotonic

16 2ulp 0.29ulp Yes 2ulp 0.54ulp Yes
14 9ulp 2.22ulp Yes 7ulp 2.32ulp Yes
12 127ulp 39.13ulp Yes 87ulp 34.3ulp Yes
8 32416ulp 9537ulp No 22644ulp 8737ulp No

run. It was found that 99.999 % of samples had an absolute error below 1ulp and a
small number of tests (3326) had a maximum error of 1.01ulp. By sweeping over all
possible arguments, it was confirmed that the logarithm function at this accelerator
configuration is also monotonic.

Table 5.6 lists maximum absolute error and whether the function is monotonic or
not for some configurations Ncycles ∈ {8, 12, 14, 16}. Figure 5.5 shows the absolute
errors for a subset of test samples from the exponential function in the full input range.
From this figure it can be seen that all the outputs from the exponential function have
absolute error below 1ulp. The results shown in Figure 5.5 correspond to the first row
of Table 5.6.

Next, the accuracy of the exponential and logarithm with inputs and outputs in
s0.31 format was measured (Table 5.7) . When working in s0.31 input/output format,
for exponential we have a domain of x ∈ [−1, 0) and for logarithm x ∈ [∼ 0.368, 1)
— these ranges can be covered exhaustively but it takes around two days to run in
Verilog simulation. Due to this, as before only the most accurate configuration was run
exhaustively and other configurations checked for some subset of all possible inputs.

When the accelerator was configured to do Ncycles = 16 cycles, it was found that
most of the possible exponential outputs from the inputs in the domain x ∈ [−1,0) had
accuracy below 1ulp (2−31 = 0.000000000465...) with some arguments (9741) having
a larger error below 2ulps (average error of 0.29ulp) — the first row in Table 5.7. This
means that most of the results of the accelerator are one of the two values on both sides
of the binary64 sample, and in rare cases it is one of the four neighbouring values.
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Figure 5.6: Accuracy of s0.31 exponential accelerator with Ncycles = 16 cycles set-up
to iterate (every 400000th value of the input domain is plotted).

Note that ulps16.15 = 65536ulps0.31 and therefore even the Ncycles = 8 configuration
is more numerically accurate than the configuration with Ncycles = 16 in s16.15 format,
and should be used instead of that if the wide input domain is not required in a given
application. Figure 5.6 shows the absolute errors from some inputs in the full input
range of the s0.31 exponential function.

For the logarithm function in s0.31 format with the accelerator set to do Ncycles = 16
cycles, in the range x ∈ [∼ 0.368, 1), the maximum error is 2ulp with the average error
of 0.54ulp. Note that at this input format, the logarithm function has a very limited do-
main, with∼ 0.368 being the smallest value before the result saturates. Therefore, it is
more likely that most applications would use a mixed input/output format s0.31/s16.15
instead (Refer to Table 5.4).

5.4.1.2 Accuracy of mixed-format fixed-point exp

This section shows results from the tests of the accelerator when different input/output
fixed-point formats are mixed. This can be either s16.15 as input and s0.31 as output
or s0.31 as input and s16.15 as output. Some such combinations for logarithm provide
a very limited function domain, for example s16.15/s0.31 in Table 5.4 and is unlikely
to be used in any application. Here only the exponential function with the input format
of s16.15 and output format of s0.31 is analysed here, which, as shown, has a conve-
nient input and output range to maximize the accuracy of exponential decay function
(Section 3.2). The results are shown in Table 5.8.

For exponential in input/output format of s16.15/s0.31, the input range is x ∈
[−21.488, 0). By sweeping through the full domain, when the unit is configured to
do Ncycles = 16 cycles, it was found that the maximum error was below 1ulp (2−31 =
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Table 5.8: Accuracy and monotonicity of the exponential function for different num-
bers of iterations Ncycles, in the accelerator with 2 algorithm iterations per clock cy-
cle and mixed fixed-point input and output format (s16.15/s0.31). ulp = 2−31 ≈
0.000000000465. Maximum error reported is rounded up to the larger integer.

Ncycles Max error Average Monotonic

16 1ulp 0.477ulp Yes
14 8ulp 0.567ulp Yes
12 125ulp 3.17ulp Yes
8 30180ulp 675ulp Yes

0.000000000465...). When Ncycles is reduced, more error is introduced at the bottom,
with Ncycles = 14 having a maximum of 8ulp of error, and so on. When Ncycles = 8,
a maximum error of 30180ulp with an average error of 675ulp was measured. While
it is a very large relative error, the absolute value is smaller than the machine epsilon
of the s16.15 format and therefore a much faster and more accurate exponential de-

cay function can be implemented by using this accelerator configuration instead of the
standard s16.15 format for both input and output. And as shown in Chapter 3, mixed-
format multiplication can easily be implemented to give more accuracy in exponential
decay when computing X0e−

∆t
τ (also, making sure that −∆t

τ
is calculated as accurately

as possible).

5.4.1.3 Accuracy of binary32 exp and log

To measure accuracy of the floating-point exponential and logarithm accelerator func-
tions it is important to note that the LSB (machine epsilon) has different values for
different numbers depending on the exponent and therefore errors have to be measured
relative to that (as discussed in Section 2.1.3). Ulp error measurement is very useful
in this case as it is, by definition, measuring errors relative to the exponent. As Muller
[37] points out, it is important to use the error for measurement that is not derived from
the approximation, but from the reference values (given a value x and its approxima-
tion X , we should find the size of ulp to measure error using ulp(x) and never ulp(X)),
and the error measurement test bench developed here takes that into account.

First, given some argument in the binary32 floating-point format, a reference value
is calculated using C binary64 libraries for exponential and logarithm. Then this refer-
ence value in binary64 is converted to the nearest binary32 floating-point number, and
its ulp is calculated. Finally, it was checked that the approximation of exponential or
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Table 5.9: Accuracy and monotonicity of binary32 exponential and logarithm func-
tions for different numbers of iterations Ncycles, in the accelerator with 2 algorithm iter-
ations per clock cycle. The first test with Ncycles = 16 was done using all representable
values in the full function domain while the other tests for speed were performed using
around 4 million arguments uniformly spread in the function input domain. Maximum
error reported is rounded up to the larger integer.

exp log

Ncycles Max error Average Monotonic Max error Average Monotonic

16 1ulp 0.066ulp Yes 192ulp 0.25ulp Yes
12 1ulp 0.086ulp Yes 2043ulp 0.27ulp Yes
8 252ulp 15ulp No ∼ 10Mulp 8.28ulp No
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Figure 5.7: Accuracy of binary32 exponential in the full accuracy configuration of
Ncycles = 16 cycles (every 400000th floating-point value in the exponential function
domain shown).

logarithm coming from the accelerator, called with the same floating-point argument,
is within ±k× ulp(x) from the reference value and report the maximum k over the
full input domain of the function. The fact that ulp has different values to the left and
right of some values in floating-point arithmetic is well known, specifically when the
exponent changes between the two neighbouring values, and this fact is also taken into
account by checking ulp on both sides of the reference.

Table 5.9 contains the accuracy measurements of exponential and logarithm func-
tions in 3 different accuracy configurations of the accelerator. From the exhaustive test
of all possible input values when Ncycles = 16, it was found that exponential had 1ulp
accuracy and logarithm had 192ulp accuracy. Another observation from this table is
that for some lower accuracy settings, the average error of the exponential function is
increasing slightly, but the maximum error stays at 1ulp and the function is monotonic.
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Figure 5.8: Accuracy of floating-point logarithm in the full accuracy configuration
of Ncycles = 16 cycles (every 400000th floating-point value in the logarithm function
domain shown). Top: some values from the full input domain; middle: relative errors
near x = 1; bottom: absolute errors near x = 1.

Some of the errors in the exponential function are plotted in Figure 5.7 which shows
that most of the errors are below 0.5ulp (average error of 0.066ulp shows that most of
the errors in fact are closer to 0ulp than to 1ulp).

In terms of the logarithm function, a large error of 192ulp appears for input argu-
ments that are very close to 1, but are not exactly 1, which produce very small answers
close to 0. However, since internally the computation is done in s3.35 fixed-point
representation, there are not enough bits to represent these small values, and when a
normalized floating-point answer is being constructed multiple zeros are propagated



144 CHAPTER 5. EXP AND LOG FUNCTION ACCELERATOR

at the bottom producing large relative errors. This happens for a very small range of
inputs x ∈ [0.9977340698..., 1.003865242...], where 14673 inputs produced an error
larger than 1ulp.

Options for calculating this range using a polynomial approximation in high pre-
cision instead of running the iterative algorithm were considered, but significant hard-
ware costs resulted due to a series of wide multipliers and adders (exhaustive tests were
out of scope but 4th order polynomial seemed to be required). Instead a decision was
made to leave this small range as it is because the absolute errors are very small, given
that the values are close to 0 where steps between the neighbouring values are∼ 2−126.

Figure 5.8 shows some values from running error measurements of the logarithm
function in binary32 mode. First, it can be seen that most of the errors in the full
input domain (all positive values greater than zero representable in floating-point) are
below 0.5ulp (with an average error in total being 0.25ulp). Furthermore, while relative
errors near x = 1 start to get quite large, absolute error in the most relatively inaccurate
ranges are smaller than in the surrounding ranges. Therefore, while the maximum error
of 192ulp is not meeting any of the accuracy requirements laid out by the floating-point
standards, this happens only in a very small range of inputs and the absolute error is
not significant, therefore not worth fixing by adding extra hardware resources.

5.4.2 General exponentiation function

Another useful feature that this module provides for SpiNNaker is that it is possible
to compute a general exponentiation function for some limited range of arguments by
using exp and log modes of the accelerator as follows: xa = (elog(x))a = elog(x)×a.
The delay of this function comprises of two invocations of the accelerator plus a
multiplication, but generally this will be much faster than any software implemen-
tation. Furthermore, using the equation above, it is possible to achieve square root
(
√

x= x
1
2 = elog(x)�1, where� is arithmetic shift right), reciprocal (1

x = x−1 = e−log(x))
and sigmoid function 1

1+e−x = (1+ e−x)−1 = e−log(1+e−x) (although possibly this can
be done faster using the exponential accelerator once and hardware division available
in ARM M4F). All of these functions can be achieved by combining the accelerator
for exp and log, and the typical ARM instructions for multiplication, shifting, and ad-
d/subtract. Most of these functions appear in SNN models, especially reciprocal and
sigmoid for developing intrinsic currents in Hodgkin-Huxley type of neuron models
[132] and power law weight change dependence (∆w ∝ w0.4) in STDP rule discussed
by Morrison et al. [67].



5.4. RESULTS 145

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

w

E
rr

or
of

w
0.

4
(u

lp
)

Figure 5.9: Accuracy of the general exponentiation function w0.4 in s16.15 numeri-
cal format in the full accuracy configuration of Ncycles = 16 cycles, compared to C
binary64 pow(w, 0.4) function.

While running exhaustive tests for all possible bases and powers is out of scope
due to a very wide search space, some basic tests were ran using the power of 0.4 and
assuming weights between 0 and 10 in s16.15 format for bases that might be used in
the weight dependence of STDP developed by Morrison et al. [67]. A logarithm is
taken of each weight value in the range w ∈ (0,10], the result is multiplied by 0.4 in
u0.32 fixed-point format, the result is then rounded to the nearest s16.15 value and
exponential of that is taken to get the final answer of w0.4. In this test, the maximum
error was 2ulp with an average of 0.65ulp in the range w ∈ (0,1] (which can be useful
if weights have these specific bounds) and 3ulp with an average of 0.9ulp error in the
full range.

Figure 5.9 shows a plot of∼80000 output errors in this range and, as expected, the
errors grow as w grows due to the multiplier in the exponent. For this limited range
of input and fixed exponent this might be a suitable faster solution than the software
library for the general exponentiation function, but by no means a replacement to a
very accurate implementation due to possibly very large errors as shown by Muller
[16]. For a more in depth discussion about errors involved in this implementation see
[29, Ch. 7] and [16, Ch. 13].

5.4.3 Synthesis study

A synthesis study of the presented design was executed, using the makeChip hosted de-
sign service platform [121] for the GLOBALFOUNDRIES 22FDX technology [122]
in which the SpiNNaker2 chip is being developed. An ultra-low voltage 8t-CNRX
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Table 5.10: Synthesis of the exp-log accelerators with different numbers of iterations
per clock cycle. The clock was constrained at 150 MHz

Iterations per cycle, I Normalized area SLVT cells Timing met

1 1 2.7% Yes
2 1.12 8.8% Yes
4 1.22 34.5% Yes
6 1.79 56.8% Yes

Table 5.11: Synthesis of the exp-log accelerators with different numbers of iterations
per clock cycle. Clock was constrained at 250 MHz

Iterations per cycle, I Normalized area SLVT cells Timing met

1 1 38.1% Yes
2 1.05 45.8% Yes
4 1.36 63.3% Yes
6 2.21 75.9% No

standard-cell library with multiple voltage threshold options is used for implementa-
tion. The standard cells use the adaptive body biasing (ABB) technique for post-silicon
adaptation of transistor threshold voltage [123, 124]. Namely two main categories of
cells are used: LVT and SLVT cells — the former slower than the latter, but has signif-
icantly less leakage. A nominal supply voltage of 0.50 V is considered for low power
operation. Synthesis is performed in a worst case operating condition at 0.45 V and
−40 °C.

Firstly, multiple accelerators were synthesised with different numbers of iteration
modules placed per clock cycle (denoted by a variable I) which is interesting from
the perspective that this algorithm is sequential and the more iterations are evaluated
on each cycle the lower the latency to obtain some fixed accuracy answers. Similarly
to the accelerator with I = 2 shown in Figure 5.4, in Tables 5.10 and 5.11 results
are shown of multiple accelerators synthesised with I ∈ {1,2,4,6} for different clock
constraints fclk = 150MHz (Table 5.10) and fclk = 250MHz (Table 5.11). The tables
list the area normalized to the area of the most unconstrained sample, which is the
approximate area before place and route, the percentage of SLVT cells used (this gives
us a convenient measure of major leakage increase if high and an indication that the
synthesizer is struggling to meet the timing constraints), and whether timing was met
or not after all of the possible optimisations (including usage of fast cells).
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This data shows that when fclk = 150MHz, for I ∈ {1,2}, a very small num-
ber of SLVT cells are required to meet timing constraints and for I > 2, a lot of
SLVT cells are placed on the path with iterations to meet timing constraints (we know
this since other logic blocks such as range reduction are not changing here). When
fclk = 250MHz, a significant number of SLVT cells are required for all the accelerator
versions, most likely both in the iterative path and in the range reduction/reconstruction
cycles. However, by observing the timing optimisation report, it was visible that when
fclk = 250MHz, I ∈ {1,2}, most of the SLVT cells were used on the range reduction
and reconstruction paths, as the iterative path of the circuit has a smaller propagation
delay. When I > 2, the percentage of SLVT cells rapidly increases to meet the timing
constraints on the iterative path as at this point it is the slowest path of the circuit.
Finally the limitations of this algorithm are reached when fclk = 250MHz and I = 6
where timing constraint cannot be met even with SLVT cells on the iterative path.

Next, a sweep of the clock speed constraint in the range fclk ∈ [50, 400] was per-
formed, and area and leakage power (normalized) data was gathered to compare three
accelerators with I = 1, I = 2 and I = 4 (Figures 5.10 and 5.11). It can be seen in
Figure 5.10 that area is growing, as more LVT cells are used to parallelize various
parts of the circuit to meet the timing constraint, until 150 MHz. After that point, the
synthesizer starts using SLVT cells, of which it most likely needs fewer, hence the area
decrease. It is clearly visible that the area difference between the accelerators with
I = 1 and I = 2 is negligible whereas 4 iterations has almost double the area of the
version with one iteration.

Figure 5.11 shows the leakage comparison in the same conditions. It can be seen
that leakage for the accelerators with I = {1,2} increases significantly from around
fclk = 100MHz when the synthesizer starts adding SLVT cells on the range reduction
and range reconstruction paths. On the other hand, the accelerator with I = 4 has a
rapid increase in leakage straightaway due to increased usage of SLVT cells both on the
iterative path, and range reduction and reconstruction paths. Once again, accelerators
with I = 1 and I = 2 show minor differences in leakage, whereas the accelerator with
I = 4 has almost order of magnitude more leakage on most of the clock frequencies.

Further observation from this data is that leakage power is a major problem at
high clock frequencies — unlike chip area, leakage keeps increasing supralinearly with
the increasing clock frequency. Also, since there is only a minor increase in leakage
by going from 1 to 2 iterations, it is clear that all of the leakage is mainly in range
reduction/reconstruction paths in those accelerators — not surprising since those paths
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Figure 5.10: Circuit area of the accelerator when synthesised with different clock con-
straints. Three accelerator versions are shown with 1, 2, and 4 iteration units per clock
cycle.
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Figure 5.11: Leakage of the accelerator when synthesised with different clock con-
straints. Three accelerator versions are shown with 1, 2, and 4 iteration units per clock
cycle.
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contain count-leading-zero modules, shifters, and carry-propagate adders while the
iterative part is fast due to the use of carry-save representation as explained above.

5.4.4 Accuracy-power-latency-area trade-offs

Figures 5.12 and 5.13 summarise various tradeoffs for a subset of accelerators that have
been synthesized with two clock constraints: at 150MHz and 250MHz. It is clear from
these diagrams that the accelerator with I = 2 is a good choice for SpiNNaker2, with
the aim to decrease leakage power. By trading off a bit of area and leakage compared
with the accelerator I = 1, a substantial decrease in latency, for the same accuracy
settings, is achieved. This is not the case with the accelerators with I = 4, since that
tradeoff does not work that well due to disproportional increase in leakage. However,
the option I = 4 would be useful in order to minimize latency and dynamic power
by paying the cost in leakage — at fclk = 150MHz even higher settings I = 6 were
possible to synthesize with timing constraints met, even further pushing the latency at
the cost of leakage power (Table 5.10).

5.4.5 Power analysis

The prototype core (PE), which will be used in the SpiNNaker2 chip, was equipped
with the presented elementary function accelerator (version with I = 2 iterations per
clock cycle). The power consumption of the whole PE is analysed in a typical pro-
cess condition at worst case power conditions of 0.8 V at 85 °C. SpiNNaker2 PEs are
designed to work in a nominal supply voltage of 0.5 V, but 0.8 V is used here since
dynamic voltage and frequency scaling (DVFS) will enable fast operation at a second
performance level of 0.8 V as shown by Höppner et al. [61].

Some basic tests of the accelerator were performed by running realistic software
test cases including an arbitrary number of calls to the exponential and logarithm func-
tions, on a netlist of a complete PE. Tables 5.12 and 5.13 provide comparison of the
accelerator to some software libraries of exponential and logarithm functions. It can
be seen that at some area cost we can obtain a much higher throughput exponential
function with very small energy consumption compared to software implementation.

Furthermore, in Table 5.14 provided is a comparison of the exponential accelerator
and in Table 5.15 the natural logarithm accelerator from this study to some other simi-
lar designs available in the literature. It can be seen that the presented solution has an



150 CHAPTER 5. EXP AND LOG FUNCTION ACCELERATOR

Area

Leakage
power

Latency

Accuracy

I = 1, Ncycles = 16 I = 1, Ncycles = 32
I = 2, Ncycles = 8 I = 2, Ncycles = 16
I = 4, Ncycles = 4 I = 4, Ncycles = 8

Figure 5.12: Tradeoffs with various versions of the accelerator for fclk = 150MHz. The
main parameters are I, Ncycles, and fclk, where I is number of iteration units per cycle,
Ncycles is software-programmable number of iterations, and fclk is the clock frequency
constraint in the synthesis.
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Figure 5.13: Tradeoffs with various versions of the accelerator for fclk = 250MHz. The
main parameters are I, Ncycles, and fclk, where I is number of iteration units per cycle,
Ncycles is software-programmable number of iterations, and fclk is the clock frequency
constraint in the synthesis.
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Table 5.12: Comparison of the exponential accelerator synthesised with a complete
PE at operating conditions of 0.5 V and 200 MHz clock frequency, to software imple-
mentation. Software fixed-point exponential function speed is reported by Partzsch
et al. [59] and floating-point result is obtained by running expf() function from the
GCC math.h library on the ARM M4F. Yan et al. [21] report even higher numbers
of these functions tested in software on a SpiNNaker2 prototype (106 for fixed-point
and 163 for floating-point). Power estimates shown are of the whole PE in all cases.
∗ - includes 2 cycles for reading and writing operations.

Exp accelerator Fixed-point soft. exp binary32 soft. exp

Latency 7–22 cycles/exp∗ 95 cycles/exp 120 cycles/exp
Throughput 9–28.6M exp/s 2.1M exp/s 1.7M exp/s
Energy per exp 0.3–0.93 nJ/exp 4.43 nJ/exp 5.6 nJ/exp
Total area 6519 µm2 - -

Table 5.13: Comparison of the logarithm accelerator synthesised with a complete PE at
operating conditions of 0.5 V and 200 MHz clock frequency, to software implementa-
tion. Floating-point logarithm function speed is obtained by running logf() function
from the GCC math.h library on the ARM M4F. ∗ - includes 2 cycles for reading and
writing operations.

Log accelerator binary32 soft. log

Latency 7–22 cycles/exp∗ 140 cycles/log
Throughput 9–28.6M log/s 1.4M log/s
Energy per log 0.3–0.93 nJ/log 6.5 nJ/log
Total area 6519 µm2 -

advantage by providing options for controlling the energy and accuracy of the accel-
erator as well as providing different input/output formats. Additionally, the presented
implementation achieves a strictly increasing, or monotonic, function — unfortunately
none of the designs, that are compared with, report this property.

However, by using the iterative algorithm (which makes it hard to introduce pipelined
operation) and introducing more control of the unit we pay in throughput compared to
other designs available. However, since there is no use case where a large number of
function invocations is needed one after the other, the lack of pipelining support is not
a major downside. Figure 5.14 shows the layout of a single PE after place and route,
with the exp-log accelerator highlighted.
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Figure 5.14: Layout of a PE after place and route. Cells marked ...macro bundled at the
north-west corner are the local memory. The rest of the cells at the south-east corner
belong to an ARM M4F based PE. Out of that, cells highlighted in white belong to the
exp-log accelerator with I = 2 iterations. Picture provided by Stefan Scholze.
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Table 5.14: Comparison of the exponential function accelerator synthesised with a
complete PE at operating conditions of 0.5 V and 200 MHz clock frequency, to sim-
ilar designs. ∗ — accelerator only (no processor involved); † — includes logarithm
function in the same design.

This work† [59] [141] [145]

Technology 22 nm 28 nm FPGA 65nm
Throughput 9M–28.6M exp/s 83M exp/s 4.4M exp/s 24.8M exp/s
Pipelined No Yes No No
Energy per exp 0.3–0.93 nJ/exp 0.44 nJ/exp - 0.002 nJ/exp*
Format fixed & float fixed float fixed
Monotonic Yes - - -
Accuracy control Yes No No No
Multi-format Yes No No No
Area 6519 µm2 10800 µm2 - 20700 µm2

Table 5.15: Comparison of the logarithm function accelerator synthesised with a com-
plete PE at operating conditions of 0.5 V and 250 MHz clock frequency, to similar
designs. † — includes exponential function in the same design. ‡ — average from 4
presented results on 2 different FPGAs.

This work† [141] [142]

Technology 22 nm FPGA FPGA
Throughput 9M–28.6M log/s 5.5M log/s 20.2M log/s‡

Pipelined No No Yes
Energy per exp 0.3–0.93 nJ/log - -
Format fixed & float float float
Monotonic Yes - -
Accuracy control Yes No No
Multi-format Yes No No
Area 6519 µm2 - -

5.5 Testing in silicon

A version of the accelerator containing only the fixed-point formats [126] was tested in
JIB1 prototype chip manufactured in 22nm technology. Due to time constraints, only
some quick tests could be run; specifically, multiple invocations of the exponential
and logarithm functions were performed and confirmed that the expected numbers are
returned (as in Verilog testing). Figure 5.15 shows the board with four prototype JIB1
chips on which the accelerator was tested. Each JIB1 chip contains 8 PEs [63].
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Figure 5.15: Photo of the board containing four JIB1 chips (photo provided by Sebas-
tian Höppner).

5.6 Previous work

Most of the elementary function accelerator designs available in the literature are de-
signed and evaluated in the context of FPGAs, taking into account different resources
available on different FPGAs. For example, some FPGAs contain DSP blocks to do
certain operations in various precisions and numerical formats, and designers usually
focus on how to optimize the usage of those blocks. As not many designs are avail-
able in the literature that were evaluated in an environment similar to ours, that is,
22nm technology with different cell types available, an exhaustive comparison of the
presented accelerator to the works in literature cannot be performed.

Another difference is that the authors try to run the FPGA designs as fast as pos-
sible, so any given function is evaluated in terms of the maximum timing-clean speed
that can be achieved. However, in this case there is no such freedom because if we try
to speed up the circuit, more expensive faster cells will be used and power consumption
will increase.

Furthermore, it is very hard to find any designs that include multiple numerical
formats, and both exponential and logarithm functions in one design sharing hard-
ware resources. Finally, accuracy control is even more unpopular and is not widely
explored yet, with an approach of meeting 1ulp accuracy as dictated by the standards
usually taken without considering including some control for reduced accuracy and
faster operation. Monotonicity is also not checked in any of the designs found in the
literature. Table 5.14 provides some comparison of the area/energy/latency to other



156 CHAPTER 5. EXP AND LOG FUNCTION ACCELERATOR

designs. In this section some papers are reviewed in more detail, focusing on the algo-
rithmic choices and tradeoffs and compared to the choices made in the current study.

In all likelihood state-of-the-art design of the binary32 floating-point exponential
and logarithm functions is published by Langhammer and Pasca [142]. The main goal
of the paper is to evaluate the best way to use the resources of two FPGA models (which
include for example binary32 floating-point adders and multipliers on the board) for
implementing the two elementary functions, and the main goal is to utilize DSP and
memory blocks as much as possible and use less FPGA logic.

Range reduction of the logarithm function is performed in a similar fashion to the
work presented in this thesis, but the main part calculating the logarithm in the reduced
range uses Taylor expansion. Additionally, there is a second level of range reduction
for when the argument is not close enough to 1 and the Taylor series cannot be used.
The core part of the Taylor expansion uses three multipliers and two adders. For range
reduction (k× log(2), where k is an 8-bit exponent if the input argument is normalized),
a 256x40bit table is used, but the authors mention that using a multiplier by constant is
also an option. In total, three LUTs, 4 multipliers (only one multiplies by a constant)
and 7 adders have been used.

Exponential is similarly performed using Taylor series, after appropriate range re-
duction steps are taken. Due to the multipliers and LUTs used, this design would prob-
ably result in a very large chip area and leakage power. However, the main advantage
is that a pipelined operation can be used and a high throughput of exp/log operations
can be obtained. The authors also report the accuracy of 3ulp to meet the OpenCL
standard [143]. There was no comment on whether the hardware resources can be
shared between the functions, but judging from the architectural diagrams, hardware
for doing Taylor series is different for exponential and logarithm, and the infrastruc-
ture for range reduction is also very different for each function (which is the case in
general) and therefore the designs are almost completely decoupled from each other,
causing more circuit area utilization if both functions are wanted. Finally, a wide array
of different versions of the accelerators are synthesised — exponential has the latency
between 20–34 clock cycles of various different frequencies and the logarithm has 31–
44 clock cycles, again for various different clock frequencies that were meeting timing
constraints.

Another relatively recent paper exploring floating-point exponential on FPGAs is
[146]. The algorithm performs two levels of range reduction until the input is small
enough to do a Taylor series expansion and obtain the exponential. The design again,
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as the design by Langhammer and Pasca [142], uses a number of multipliers, and is
optimized for high throughput of functions and deep pipelining without considering the
total logic area and power that would result if implemented as a circuit from scratch,
rather than an FPGA. The design is part of the FloPoCo arithmetic hardware generation
tool [147] which can be used to generate VHDL designs for specified accuracy and
pipeline depth. For a design that is generated with FloPoCo targeting binary32 floating-
point number format, the authors report a 3-23 cycle latency for clock frequencies
between 180-500mhz. Finally, this design has 1ulp accuracy.

5.7 Trading off processors per chip for accelerators

In other technologies, such as FPGAs, various tradeoffs are explored for optimizing the
hardware given some set of target applications, allowing to generate microprocessor-
based systems that are smaller, lower power, and faster on those target applications.
For example, Wold et al. [148] explored when should certain instructions from proces-
sors be removed and emulated in hardware, or alternatively, when should highly used
software functions be designed in hardware, which extends the instruction set of the
processor. An approach taken in this thesis, to optimize certain numerical functions
is similar. However, one tradeoff dimension is interesting to consider in SpiNNaker,
that of accelerators in each processor per chip versus using the chip area that accelera-
tors occupy for adding more processors per chip — which approach allows to simulate
larger SNNs?

It is useful to consider Amdahl’s law in trying to maximize the size of networks
that SpiNNaker2 can simulate. There are two main approaches for doing that.

• We have a neural network with the goal to simulate it efficiently. We can as-
sume that we have theoretically infinite parallelism (1 million cores on the full
SpiNNaker machine or 10 million on SpiNNaker2). We start by allocating an
arbitrary number of neurons to each core, run the application and find that it is
too slow. Next start exploiting more parallelism of which we have infinite re-
sources, and in SpiNNaker this is done by allocating less neurons per core, and
using more cores. By going this route we eventually hit Amdahl’s law, so that
the serial part of the SpiNNaker software is not allowing further speedup. This
is the point when accelerators on the serial part of the simulation (updating a
synapse for example) can push the performance further — adding more cores
per chip will not impact how far performance can be pushed in this case.
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• We have a machine with a limited number of cores and we want to simulate
as many neurons/synapses as possible in that machine. In this case, we try to
find the maximum number of neurons/synapses that each core can simulate in
some time constraint. It is easy to see that if we speed up parts of the algorithm
for simulating each neuron by accelerating some highly used functions, more
neurons can be evaluated by each core in a given time.

A benchmark with a complex plasticity rule at the moment is a structural plasticity
algorithm explored by Yan et al. [21]. The authors show that approximately 43% of
processor cycles available in one simulation timestep are spent in software exponential
function which is called for each synapse update. Following the classification methods
explored by Wold et al. [148] this function therefore would be classified as frequently
used and therefore best to be done in hardware. Calculating exponentials in hardware
allowed the number of synapses that each core can simulate to increase from 1900 to
4100 in [21], which means more than 100% increase per chip (roughly extra 19000
synapses, assuming 100 cores per chip). This can further be pushed by trading off
accuracy for speed which is programmable in the accelerators presented in this thesis.

Adding more cores per chip instead of the accelerators would not provide substan-
tial improvement in this case: assuming that the exponential accelerators use 2% of
the chip area, roughly 2 more processors could be added (assuming 100 processors per
chip) and this would result in only 2×1900 = 3600 extra synapses per chip. Further-
more, the complexity of plasticity rules can potentially increase further in the future
applications of SpiNNaker, requiring for example multiple exponentials per update.
However, it is worth to note that, as discussed by Wold et al. [148], in the applica-
tions where exponential function is classified as having infrequent usage, accelerators
would not provide much advantage, and having more cores per chip would be a better
approach to go for.

5.8 Conclusion

In this chapter an elementary function accelerator for exponential and natural log-
arithm functions, with accuracy control and multiple input/output formats was pre-
sented, which can be adapted to specific designs with various constraints by control-
ling how many iteration modules are run per clock cycle. The design considerations
come down to a 4-dimensional problem of optimising power(leakage)-area-accuracy-

latency; synthesis results were shown covering some of the versions of the accelerator
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in this space. Low energy consumption and additional options for reducing it further
by controlling the accuracy of the unit will provide a suitable elementary function ac-
celerator for neuromorphic applications, where low power is the main priority and full
numerical accuracy is most likely not required in most applications.

The contributions of this chapter are as follows.

• A working choice of dn for the carry-save shift-add algorithm for evaluating the
logarithm function (Section 5.2.3) was provided. An extension of the shift-add
algorithm is presented by Muller [16], where he covers exponential for signed-
digit and carry-save representations, and logarithm in signed-digit representation
only, without showing carry-save implementation and not mentioning why it was
not included. Therefore this contribution is most likely new.

• A C model of the shift-add algorithms was developed (Appendix C).

• An architecture for a single iteration of the shift-add algorithm was shown, which
can be used for computing both exponential and logarithm function.

• Optimization of the look-up table of dn choice in the shift-add algorithms was
shown, which can be used to reduce the size of this table if the ranges of the
inputs are smaller than the full convergence domains of the shift-add algorithms.
This was also not discussed by Muller [16] and is therefore probably a novel
result in that direction.

• A full design of the exp/log accelerator in two fixed-point formats and the bi-
nary32 floating-point format with configurable accuracy was presented, and its
accuracy and monotonicity were evaluated in a wide array of configurations.
A version of the accelerator with fixed-point formats was included in the proto-
type SpiNNaker2 chip (JIB1) which was manufactured in 22nm technology. The
overall extension of the arithmetic hardware, which includes the random number
generator [149], the rounding accelerator presented in Chapter 4, and the expo-
nential/logarithm accelerator, is currently estimated to take approximately only
3 % of the area and 7 % of the leakage of one PE of the SpiNNaker2 chip.

• A synthesis study of the various versions of the accelerator was performed us-
ing a 22nm cell library. This synthesis study is novel as it does not seem to
have ever been performed in the available literature on these elementary func-
tion algorithms — usually an approximation of the costs of various parts of these
circuits is used to reason about the comparisons.
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• The final accelerator with I = 2 iterations per clock cycle and all the numerical
formats is, at the time of writing, included in the upcoming SpiNNaker2 proto-
type chip (JIB2) and the final SpiNNaker2 chip.

In terms of further work on this kind of accelerator, the main path would be to
experiment with higher-radix implementations of the iterative algorithm [16, 150] to
speed up the iterative part of the accelerator — as described by Muller [16, Sec. 10.1],
a radix-2k version of the iterative algorithm implementation presented here would con-
verge in n/k iterations, instead of n when radix-2 is used, to give n-bit accuracy. With
a high enough radix, the loop in the main iteration cycle of the module can be removed
so that pipelined operation could be implemented.

The difficulty with higher radix algorithms would be larger look-up tables for nat-
ural logarithm entries in the Ln iteration; also the choice of dn value, which in higher
radix can adopt more values than dn ∈ {−1,0,1}, and on each iteration would result
in more sophisticated dn look-up tables. Following are some more observations from
private communications with Miloš Ercegovac and his published research. In the orig-
inal paper evaluating radix-16 shift-add algorithms, Ercegovac [150] concluded the
following ratios for a class of radix-2/radix-16 algorithms: cost 2/3, cycle time 1/3,
and latency 4/3. Therefore the advantage of using radix-16 is not that clear, if any.
In terms of energy, latency is reduced, but cost per cycle is increasing and therefore
some research is required here to understand the energy requirements at higher radices.
Piñeiro et al. [151] looked at logarithm, using the shift-add algorithm that was used in
this study, with radices between 8 and 1024. The conclusion was that there is no ad-
vantage to using very high radices of 512 and 1024 due to exponential growth in the
size of look-up tables required with increasing radix. The best option were radices of
128 and 254 for high-speed execution, but not for area. For area it was concluded that
radices of 16, 32, and 64 were the most suitable options.

If a radix option could be found that decreases latency from 22 cycles in the pre-
sented accelerator without adding a lot of area overhead, it would be a good option
for a system similar to SpiNNaker2. The C model could first be extended for easier
development and testing of the algorithm and then moving that to Verilog should be
straightforward. With that, similar synthesis studies could be done to find any improve-
ment in area and leakage of higher radices in this algorithm.

Further work on evaluation, once the JIB2 prototype chip or the SpiNNaker2 chip
is available, would be to explore how accuracy control can impact various neuron
and synaptic plasticity models, and how well does a general exponentiation function
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Chapter 6

Conclusion

This thesis explores the development of arithmetic accelerators for the second ver-

sion of the digital neuromorphic chip SpiNNaker, with the main goal of improving the

speed and energy efficiency of spiking neural network simulations. As not all possible

accelerators, but only the ones running arithmetic functions, are the focus of this the-

sis, naturally, numerical accuracy was also addressed and some issues in the current

SpiNNaker software were discovered and explored in detail. Here a summary of the

contributions of this thesis is given with some possible future directions in this type of

research.

6.1 Summary of the research

This thesis has addressed the design of two accelerators for SpiNNaker2, preceded by
some numerical accuracy exploration done on the current version of SpiNNaker.

In Chapter 3 the numerical accuracy issues demonstrated by Hopkins and Furber
[14] were addressed and it was shown that the major spike lags observed by the authors
were due to lack of rounding in the constants and in the fixed-point multiplication
routine provided by GCC. Furthermore, mixed-precision arithmetic was employed and
it was shown how spike lags can be reduced further. The summary of results was
that the 19th spike lag from the Izhikevich neuron stimulated by a constant current
was reduced from approximately 60 ms to 0.1 ms when a neuron ODE is solved with
RK2 Midpoint solver at ∆t = 0.1ms. The overhead to the speed of the ODE solver
is negligible if rounding is not enabled compared to the version used by Hopkins and
Furber [14]; if rounding is enabled, the ODE solver is ∼ 1.8× slower — however,
considering more than an order of magnitude improvement in numerical accuracy of

163
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the neuron, this price paid in latency is worth it. It is worth noting as well that if
saturation would be turned on in Hopkins and Furber [14] version of the ODE solver
(which did not use mixed-precision arithmetic), all the presented versions in Chapter 3
would then be faster, since mixed-precision multiplication requires no saturation and
no shifting in some cases. Due to numerical error reduction, this work will improve
the reproducibility of scientific results on SpiNNaker using this neuron model, which
has recently been a subject of interest by Trensch et al. [15].

Next, in Chapter 3, it was shown how to improve the accuracy of the exponential
decay function e−

∆t
τ by using mixed-precision and without modifying the underlying

implementation of expk() function available as part of the SpiNNaker software stack
in s16.15 fixed-point format. This should help address some numerical accuracy issues
in the current version of SpiNNaker and the Santos chip (Early SpiNNaker2 prototype)
which has a hardware exponential function in s16.15 fixed-point format.

Finally, in Chapter 3 it was shown how a new plasticity rule can be developed
on SpiNNaker, which involves three factors and is the first of such complexity im-
plemented on SpiNNaker. The speed and numerical accuracy were evaluated and this
work has been used in the development of a classical conditioning experiment on SpiN-
Naker [11], and is currently being tried in the model of basal ganglia on SpiNNaker
[152].

Following this, in Chapter 4, stochastic rounding of fixed-point multiplication re-
sults was investigated to further improve the spike lag of the Izhikevich neuron model.
It appears that the improvements shown in Chapter 3 are not as apparent when the
neuron parameters are changed to a FS neuron and when a different ODE solver is
used. This variability in results is also evident when floating-point arithmetic is used.
However, stochastic rounding was shown to produce a very low spike lag across four
different ODE solvers in two different configurations of the Izhikevich neuron.

Later in the chapter, the number of random bits required in stochastic rounding was
explored by using the same neuron model in two configurations and four ODE solvers.
Spike lag increase was shown for different widths of random number and it was shown
that a large number of random bits is not required to achieve good accuracy with SR.

Lastly, informed by these improvements in accuracy by testing the ODE solvers
on the current generation SpiNNaker chip with software-implemented SR, a decision
was made to build an accelerator to do stochastic rounding faster on SpiNNaker2 in
hardware. Since SpiNNaker2 already has a PRNG in hardware, the overhead of adding
rounding support is very small. The accelerator is fully configurable in terms of which
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bits to round, supports signed and unsigned arithmetic, and can round 64 or 32-bit
fixed-point values or binary32 floating-point values to bfloat16.

Finally, In Chapter 5 a design of the exponential and logarithm accelerator for
SpiNNaker2 was presented. The prototype chip Santos already has an accelerator for
exponential [59] but the support for accuracy control and floating-point, as well as
the logarithm function were not added there. Some improvements to the underlying
shift-add algorithms for calculating exponential and logarithm functions were shown,
specifically, a carry-save version of the algorithm for logarithm was derived, and some
optimisations for the look-up tables that are used on each iteration of the algorithms
were found.

The accuracy of the accelerator was evaluated and most of the functions and nu-
merical formats can achieve 1ulp or 2ulp accuracy, with the exception of logarithm
in binary32 floating-point format. However, it was shown that while relative error of
192ulp can happen in a narrow range of inputs, absolute error is very small. Accuracy
control was also developed and evaluated for some configurations. Various versions
of the accelerator were synthesised in a 22 nm library and a fixed-point version of the
accelerator [126] was even tested in silicon, since it was added to the prototype chip
JIB1 which was recently manufactured.

Lastly, using exponential and logarithm functions, the general exponentiation func-
tion can be developed for some limited range of arguments and it was demonstrated
how to do it with an exploration of errors in some specific cases. The general exponen-
tiation function can be useful in power law weight dependence in STDP learning rules
as noticed by Knight and Nowotny [70].

6.2 Further work

Here are some suggestions for further work in addition to the suggestions already men-
tioned in each of the chapters.

First of all, multiple improvements to the default GCC’s fixed-point libraries was
shown, including rounding and mixed-precision multiplication. These can be used to
improve accuracy on other neuron models on SpiNNaker from what was explored in
this thesis. Stochastic rounding can also be explored in various parts of the SpiNNaker
toolchain, for example plasticity where weights are scaled to different formats and as
a result some accuracy in the addition operations can be lost. Additionally, various
tradeoffs can be explored to do stochastic rounding faster on SpiNNaker. This can
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include random number generation and reusing random numbers for multiple rounding
operations, either by using the full random number each time for multiple roundings
or using different subsets of bits of each random number.

On SpiNNaker2, it would be interesting to explore the accuracy and speed of neu-
ron models, such as Izhikevich or AdEx, which require using ODE solvers, in fixed-
point arithmetic, done in software with and without the SR accelerator, and done in
software but using the floating-point hardware of the ARM M4F. The floating-point
unit is potentially a very complicated unit and can require more energy than fixed-
point arithmetic in conjunction with the SR accelerator, but as indicated by the results
in this thesis, it does not necessarily give more accuracy than fixed point with SR. Fur-
thermore, exploration of accuracy-speed-energy tradeoffs of various plasticity models
by tuning the accuracy control of the exponential function accelerator would be another
possible path to take. For example, the reward-based structural plasticity model imple-
mented by Yan et al. [21] which used floating point but did not require 1ulp accuracy
of exponential function.

For future digital neuromorphic chips, various approximation techniques can be
added fully into hardware (both general-purpose processors and accelerators), for ex-
ample underdesigning the floating-point and integer components so that they can have
small probabilities of error in them. A good example is a multiplier by Kulkarni et al.
[153]. However, such techniques, called approximate computing, in general, have first
to be done in an FPGA or first simulated in software to measure the impact on a wide
array of target SNN applications. This would allow minimization of logic area and
more PEs on the chip as well as minimize energy per operation. Additionally, ap-
proximate computing can be explored at the spiking neural network level as shown by
Sen et al. [154] who designed a framework for approximating neuron behaviour by
ignoring selected neuron updates believed not to impact the neuron based on various
statistics such as average spiking rates or membrane potentials of the neurons. This
improves both compute and memory energy, since less synaptic data has to be fetched
and less computation done in updating the neurons.

6.3 Overall summary

In summary, the numerical accuracy results presented in this thesis will improve var-
ious current and future models of the current version of SpiNNaker, which usually
suffers from the lack of support for floating-point arithmetic and has to simulate real



6.3. OVERALL SUMMARY 167

numbers using fixed-point arithmetic. On the other hand, the accelerators developed
for SpiNNaker2 as part of this thesis should further improve both the numerical accu-
racy and the energy of the simulations as initial experiments in developing complex
plasticity rules performed by Yan et al. [21] indicate. Finally, the results on reducing
the numerical error of ODE solvers using stochastic rounding (which generally seems
to be a very novel result, even if just demonstrated experimentally in this thesis) in-
dicate a lot of potential for further research in this space, perhaps experimenting with
stochastic rounding in scientific computing algorithms for a wider array of applications
than was done here. If stochastic rounding can be shown to provide further improve-
ments in a lot of algorithms and in reduced-precision floating-point arithmetic, in all
likelihood it would be a useful addition to the next generation of the IEEE numeri-
cal standards and arithmetic hardware of the future processors — a potentially good
direction to take for future research.
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[60] S. Höppner, Y. Yan, B. Vogginger, A. Dixius, J. Partzsch, F. Neumärker,
S. Hartmann, S. Schiefer, S. Scholze, G. Ellguth, L. Cederstroem, M. Eberlein,
C. Mayr, S. Temple, L. A. Plana, J. D. Garside, S. Davison, D. R. Lester, and
S. B. Furber. Dynamic voltage and frequency scaling for neuromorphic many-
core systems. In 2017 IEEE International Symposium on Circuits and Systems,
Baltimore, MD, USA, May 2017. doi: 10.1109/ISCAS.2017.8050656. [p. 46.]

[61] S. Höppner, B. Vogginger, Y. Yan, A. Dixius, S. Scholze, J. Partzsch,
F. Neumärker, S. Hartmann, S. Schiefer, G. Ellguth, L. Cederstroem, L. A.
Plana, J. D. Garside, S. B. Furber, and C. Mayr. Dynamic power management
for neuromorphic many-core systems. IEEE Transactions on Circuits and Sys-

tems I: Regular Papers, 66(8):2973–2986, Aug. 2019. ISSN 1549-8328. doi:
10.1109/TCSI.2019.2911898. [pp. 46, 47, and 149.]

[62] ARM. Arm Cortex-M4 processor, technical reference manual, 2015. Revision:
r0p1. [pp. 47, 103, and 115.]

http://journal.frontiersin.org/article/10.3389/fnins.2016.00420
http://journal.frontiersin.org/article/10.3389/fnins.2016.00420
https://www.nature.com/articles/nn0900_919
https://www.nature.com/articles/nn0900_919


180 BIBLIOGRAPHY
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Appendix A

Test script for the Izhikevich neuron

1 """

2 Simple Izhikevich neuron test with constant input

3 """

4 import spynnaker8 as p

5

6 # Simulation timestep (used in the ODE solver as h)

7 p.setup(timestep=0.1)

8

9 # Regular spiking neuron parameters

10 cell_params_izk = {’a’: 0.02,

11 ’b’: 0.2,

12 ’c’: -65,

13 ’d’: 8,

14 ’v’: -75,

15 ’u’: 0,

16 ’tau_syn_E’: 50.0,

17 ’tau_syn_I’: 50.0,

18 ’i_offset’: 0.0

19 }

20

21 # Create a population with a single Izhikevich neuron

22 populations = list()

23 populations.append(p.Population(1, p.Izhikevich, cell_params_izk,

24 label="pop_1"))

25
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26 populations[0].record("v")

27 populations[0].record("spikes")

28

29 # Run for 60ms, apply DC current and then run further

30 p.run(60)

31 populations[0].set(i_offset=4.775)

32 p.run(3000)

33

34 # Get spike times from SpiNNaker

35 spikes = populations[0].get_data(’spikes’)

36 print spikes.segments[0].spiketrains[0]

37

38 p.end()



Appendix B

Test script for neuromodulated STDP

1 """

2 A simple test for neuromodulated STDP.

3 """

4

5 try:

6 import pyNN.spiNNaker as sim

7 except Exception:

8 import spynnaker8 as sim

9

10 # Simulation settings

11 timestep = 1.0

12 duration = 3000

13

14 # Set-up some spike times

15 t_pre = [1500, 2400] # Pre-synaptic neuron times

16 t_post = [1502] # Post-synaptic neuron stimuli time

17 t_dopamine = [1600] # Dopaminergic neuron spike times

18

19 # Main parameters from Izhikevich 2007,

20 # doi:10.1093/cercor/bhl152

21 tau_c = 1000 # Eligibility trace decay time constant

22 tau_d = 200 # Dopamine trace decay time constant

23 DA_concentration = 0.1 # Dopamine trace step increase size

24

25 # Initial weight
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26 rewarded_syn_weight = 0.0

27

28 # LIF neuron parameters

29 cell_params = {’cm’: 0.3,

30 ’i_offset’: 0.0,

31 ’tau_m’: 10.0,

32 ’tau_refrac’: 4.0,

33 ’tau_syn_E’: 1.0,

34 ’tau_syn_I’: 1.0,

35 ’v_reset’: -70.0,

36 ’v_rest’: -65.0,

37 ’v_thresh’: -55.4

38 }

39

40 sim.setup(timestep=timestep)

41

42 pre_pop = sim.Population(1, sim.SpikeSourceArray,

43 {’spike_times’: t_pre})

44

45 # Create a population of dopaminergic neurons for reward

46 reward_pop = sim.Population(1, sim.SpikeSourceArray,

47 {’spike_times’: t_dopamine}, label=’reward’)

48

49 # Stimulus for post synaptic population

50 post_stim = sim.Population(1, sim.SpikeSourceArray,

51 {’spike_times’: t_post})

52

53 # Create post synaptic population which will be modulated

54 # by DA concentration.

55 post_pop = sim.Population(1,

56 sim.IF_curr_exp_izhikevich_neuromodulation,

57 cell_params, label=’post1’)

58

59 # Create STDP dynamics with neuromodulation

60 synapse_dynamics = sim.STDPMechanism(

61 timing_dependence=sim.IzhikevichNeuromodulation(

62 tau_plus=10, tau_minus=12,

63 A_plus=1, A_minus=1,
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64 tau_c=1000, tau_d=200),

65 weight_dependence=sim.MultiplicativeWeightDependence(

66 w_min=0, w_max=20),

67 weight=0.0,

68 neuromodulation=True);

69

70 # Create dopaminergic connection

71 reward_projection = sim.Projection(reward_pop, post_pop,

72 sim.AllToAllConnector(),

73 synapse_type=sim.StaticSynapse(weight=DA_concentration),

74 receptor_type=’reward’, label=’reward synapses’)

75

76 # Stimulate post-synaptic neuron

77 sim.Projection(post_stim, post_pop,

78 sim.AllToAllConnector(),

79 synapse_type=sim.StaticSynapse(weight=6),

80 receptor_type=’excitatory’)

81

82 # Create a plastic connection between pre and post neurons

83 plastic_projection = sim.Projection(pre_pop, post_pop,

84 sim.AllToAllConnector(),

85 synapse_type=synapse_dynamics,

86 receptor_type=’excitatory’, label=’Pre-post projection’)

87

88 sim.run(duration)

89

90 # End simulation on SpiNNaker

91 print "Final weight: " + repr(plastic_projection.get(’weight’, ’list’))

92

93 sim.end()





Appendix C

C model for the iterative algorithm to
compute exp and log

1 #include <stdio.h>

2 #include <stdint.h>

3 #include <math.h>

4 #include <stdbool.h>

5 #include <stdlib.h>

6

7 // Number of bits in the fractional part of the internal

8 // fixed-point representation

9 #define FRACT_BITS 35

10

11 // Carry save number

12 typedef struct {

13 int64_t s; // Intermediate sum

14 int64_t c; // Intermediate carries

15 } cs_t;

16

17 double exp_log_iterative (uint64_t x, unsigned int n,

18 bool exp_not_log, bool print);

19 uint64_t cs_to_binary (cs_t x);

20

21 cs_t CSA_64 (uint64_t x, uint64_t y, uint64_t z);

22 cs_t CSA_64_4to2 (uint64_t x, uint64_t y, uint64_t z, uint64_t o,

23 int c_in_0, int c_in_1);

199
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24 cs_t right_shifter (cs_t x, int shift_by);

25

26 double fixed_to_double (uint64_t x);

27 uint64_t double_to_fixed (double x);

28 static int64_t log_table [];

29 static int64_t log_table_neg [];

30

31

32 int main ()

33 {

34 // Test single invocation of the exponential function

35 double test = exp_log_iterative(double_to_fixed(0.8), 32, 1, 1);

36 printf("%.30f \n", test);

37

38 return (0);

39 }

40

41 // Two’s complement log_table [n] = log (1 + 2ˆ(-n))

42 // in s3.60 format.

43 static int64_t log_table [] = {

44 17647599783384385637u,

45 17979274631203908867u,

46 18189477074785057738u,

47 18310949479023432097u,

48 18376848643508726477u,

49 18411266766700229631u,

50 18428868963640801336u,

51 18437771876642035831u,

52 18442249247335610912u,

53 18444494470059998150u,

54 18445618723200870878u,

55 18446181261150360911u,

56 18446462633086987946u,

57 18446603344810431893u,

58 18446673707112770223u,

59 18446708889874322774u,

60 18446726481657723563u,

61 18446735277650083669u,
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62 18446739675671429099u,

63 18446741874688393213u,

64 18446742974198448128u,

65 18446743523953868800u,

66 18446743798831677440u,

67 18446743936270606336u,

68 18446744004990076928u,

69 18446744039349813760u,

70 18446744056529682560u,

71 18446744065119617056u,

72 18446744069414584328u,

73 18446744071562067970u,

74 18446744072635809792u,

75 18446744073172680704u,

76 18446744073441116160u,

77 18446744073575333888u,

78 18446744073642442752u,

79 18446744073675997184u,

80 18446744073692774400u,

81 18446744073701163008u,

82 18446744073705357312u,

83 18446744073707454464u,

84 18446744073708503040u,

85 18446744073709027328u,

86 18446744073709289472u,

87 18446744073709420544u,

88 18446744073709486080u,

89 18446744073709518848u,

90 18446744073709535232u,

91 18446744073709543424u,

92 18446744073709547520u,

93 18446744073709549568u,

94 18446744073709550592u,

95 18446744073709551104u,

96 18446744073709551360u,

97 18446744073709551488u,

98 18446744073709551552u,

99 18446744073709551584u,
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100 18446744073709551600u,

101 18446744073709551608u,

102 18446744073709551612u,

103 18446744073709551614u,

104 18446744073709551615u,

105 0,

106 0,

107 0,

108 0

109 };

110

111 // log_table [n] = log (1 - 2ˆ(-n)) * (-1) in s3.60 format.

112 static int64_t log_table_neg [] = {

113 0,

114 799144290325165979,

115 331674847819523230,

116 153951214096912252,

117 74407848895029353,

118 36603757030154788,

119 18156619410792733,

120 9042567959264482,

121 4512418694204213,

122 2254001704453199,

123 1126450020832802,

124 563087437130417,

125 281509342042454,

126 140746078989035,

127 70370891748697,

128 35184908970667,

129 17592320263509,

130 8796126576811,

131 4398054899733,

132 2199025352707,

133 1099512152064,

134 549755944960,

135 274877939712,

136 137438961664,

137 68719478784,
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138 34359738880,

139 17179869312,

140 8589934624,

141 4294967304,

142 2147483650,

143 1073741825,

144 536870912,

145 268435456,

146 134217728,

147 67108864,

148 33554432,

149 16777216,

150 8388608,

151 4194304,

152 2097152,

153 1048576,

154 524288,

155 262144,

156 131072,

157 65536,

158 32768,

159 16384,

160 8192,

161 4096,

162 2048,

163 1024,

164 512,

165 256,

166 128,

167 64,

168 32,

169 16,

170 8,

171 4,

172 2,

173 1,

174 1,

175 0,



204 APPENDIX C. C MODEL OF EXP AND LOG ALGORITHM

176 0,

177 0};

178

179 // EXP(x)/LN(x) algorithm in carry-save representation

180 //

181 // Algorithm is on page 139, Chapter 8

182 // of J-M Muller’s textbook on Elementary Functions, 3ed.

183 // 10.1007/978-1-4899-7983-4

184 //

185 // Input x is the number to be exponentiated (in the interval

186 // [-1.2,˜0.86) and in a chosen format); n is the number

187 // of iterations.

188 // For logarithm, x in in interval [˜0.4,˜3.4].

189 double exp_log_iterative (uint64_t x, unsigned int n,

190 bool exp_not_log, bool print)

191 {

192 unsigned int i;

193 cs_t E = {.s = 0, .c = 0};

194 cs_t L = {.s = 0, .c = 0};

195

196 // Initialize E_1 and L_1

197 if (exp_not_log) {

198 E.s = 1152921504606846976 >> (60 - FRACT_BITS); // 1.0

199 L.s = x;

200 }

201 else {

202 E.s = x;

203 L.s = 0;

204 }

205

206 // Start from iteration 1 as ln (1 - 2ˆ0) is not defined.

207 i = 1;

208 for (; i <= n; i++) {

209 // Calculate L* or lambda*

210 cs_t tmp = {.s = 0, .c = 0};

211 if (!exp_not_log) {

212 // Get En - 1

213 cs_t tmp0 = CSA_64 (E.s, E.c,
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214 0xffffffffffffffff << FRACT_BITS); // -1

215 tmp.s = tmp0.s << (i);

216 tmp.c = tmp0.c << (i);

217 } else {

218 tmp.s = L.s << (i);

219 tmp.c = L.c << (i);

220 }

221

222 // Leave 3 integer and 1 fractional bits

223 cs_t L_star_cs = right_shifter(tmp, FRACT_BITS-1);

224 L_star_cs.s = L_star_cs.s & 0xF;

225 L_star_cs.c = L_star_cs.c & 0xF;

226

227 // Convert from carry-save to non-redundant

228 // representation

229 uint64_t L_star_b = cs_to_binary(L_star_cs);

230 L_star_b = L_star_b & 0xF;

231

232 // Choose d_n

233 int d = 0;

234 if (exp_not_log)

235 if (L_star_b == 0x0 || L_star_b == 0x1

236 || L_star_b == 0x2 || L_star_b == 0x3)

237 d = 1;

238 else if (L_star_b == 0xA || L_star_b == 0xB

239 || L_star_b == 0xC || L_star_b == 0xD)

240 d = -1;

241 else if (L_star_b == 0xE || L_star_b == 0xF)

242 d = 0;

243 else {

244 printf("Impossible case at iteration %d L_star %llx \n",

245 i, L_star_b);}

246 else

247 if (L_star_b == 0x0 || L_star_b == 0xF

248 || (L_star_b==0x1 && i==1))

249 d = 0;

250 else if (L_star_b == 0xA || L_star_b == 0xB

251 || L_star_b == 0xC || L_star_b == 0xD
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252 || L_star_b == 0xE) d = 1;

253 else if (L_star_b == 0x1 || L_star_b == 0x2

254 || L_star_b == 0x3 || L_star_b == 0x4

255 || L_star_b == 0x5 || L_star_b == 0x6

256 || L_star_b == 0x7 || L_star_b == 0x8

257 || L_star_b == 0x9) d = -1;

258 else

259 printf("Impossible case at iteration %d alpha_* %llx \n",

260 i, L_star_b);

261

262 // Calculate E_n+1 and L_n+1

263 if (d == -1) {

264 L = CSA_64 (L.s, L.c, log_table_neg[i] >> (60-FRACT_BITS));

265 cs_t temp0 = right_shifter(E, i);

266 E = CSA_64_4to2 (E.s, E.c, ˜temp0.s, ˜temp0.c, 1, 1);

267 }

268 else if (d == 1) {

269 L = CSA_64 (L.s, L.c, (log_table[i]) >> (60-FRACT_BITS));

270 cs_t temp0 = right_shifter(E, i);

271 E = CSA_64_4to2 (E.s, E.c, temp0.s,temp0.c, 0, 0);

272 }

273 }

274

275 // Use a single ripple carry 32-bit adder to get the answer

276 // in non-redundant form.

277 if (exp_not_log)

278 return fixed_to_double(cs_to_binary(E));

279 else

280 return fixed_to_double(cs_to_binary(L));

281 }

282

283 // Carry-save 64bit adder made out of 3:2 compressors

284 // (full-adders). Adds three 64-bit numbers and produces

285 // two 64-bit numbers - intermediate sum and carry.

286 cs_t CSA_64 (uint64_t x, uint64_t y, uint64_t z)

287 {

288 cs_t result = {0, 0};

289 result.s = x ˆ y ˆ z;
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290 result.c = ((x & y) | (x & z) | (z & y)) << 1;

291 result.s = result.s;

292 result.c = result.c;

293

294 return result;

295 }

296

297 // Fast 4:2 compressor (page 123 of "Digital Arithmetic"

298 // by Ercegovac and Lang, 10.1016/B978-1-55860-798-9.X5000-3)

299 cs_t CSA_64_4to2 (uint64_t x, uint64_t y, uint64_t z, uint64_t o,

300 int c_in_0, int c_in_1)

301 {

302 cs_t result = {0, 0};

303 uint64_t majority = (((x&y) | (y&z) | (x&z)) << 1) + c_in_0;

304 uint64_t odd_parity = ((xˆy) ˆ (zˆo));

305

306 result.s = odd_parity ˆ majority;

307 result.c = (((odd_parity & majority)

308 + (˜odd_parity & o)) << 1) + c_in_1 ;

309

310 return result;

311 }

312

313 // Standard carry-propagate adder

314 uint64_t cs_to_binary (cs_t x)

315 {

316 return x.s + x.c;

317 }

318

319 // Carry-save number right shifter

320 cs_t right_shifter (cs_t x, int shift_by)

321 {

322 x.s = x.s >> shift_by;

323 x.c = x.c >> shift_by;

324

325 return x;

326 }

327
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328 double fixed_to_double (uint64_t x)

329 {

330 int negative = (x & ((uint64_t)0x1 << (FRACT_BITS+4))) != 0;

331 if (negative)

332 x = ˜x + 1;

333

334 uint64_t integer = x >> FRACT_BITS;

335 double exponent =

336 (double)(x - (integer << FRACT_BITS)) /

337 ((uint64_t)1 << FRACT_BITS);

338

339 double result = integer + exponent;

340 if (negative) result = result * -1;

341 return result;

342 }

343

344 uint64_t double_to_fixed (double x)

345 {

346 bool negative = x < 0;

347 if (negative) x = -1 * x;

348 uint64_t temp = floor(x);

349 uint64_t result = (uint64_t)((temp << FRACT_BITS)

350 + ((uint64_t)1 << FRACT_BITS) * (x - temp));

351 if (negative) result = ˜result + 1;

352 return result;

353 }
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