
School of Computer Science

3rd year project report

Application-specific Real-Time
garbage collection for neural
simulations on SpiNNaker

Mantas Mikaitis

BSc Computer Science supervised by
Dr. David Lester

May 1, 2016

2 REAL-TIME GARBAGE COLLECTION, SPINNAKER

Application-specific Real-Time garbage collection
for neural simulations on SpiNNaker

Mantas Mikaitis, BSc
supervised by Dr David Lester

University of Manchester

Abstract—The limitations of internal processor memory space
of the first generation SpiNNaker computer have always proven
to be a big consideration when designing memory-dependant
applications. In simulations of brain activity, many biologi-
cally plausible learning rules require history traces of each
neuron’s activity to be stored. The history traces rapidly fill
the internal memory space, therefore we must introduce a
memory management routine working in the background, which
must additionally respect the biological timing constraints of
the SpiNNaker simulations. Real-time garbage collection is an
automatic memory management technique that can satisfy these
requirements. This study presents the first ever implementation
of real-time garbage collector for SpiNNaker architecture and
evaluates the performance, carefully considering the biological
real-time constraints of the system.

Index Terms—garbage collection, automatic memory manage-
ment, hard real-time systems

CONTENTS

I Introduction 2
I-A Goals of the project 3

II Background 3
II-A Neuroscience 3
II-B SpiNNaker Computer 3

II-B1 SpiNNaker Chip 4
II-B2 ARM968 Core 4
II-B3 SpiNNaker Toolchain 4
II-B4 Development infrastructure . 4

II-C Fundamentals of Garbage Collection . . 4
II-D Real-Time collection 5

III Research 5
III-A Copying garbage collector 5
III-B Generational garbage collector 6
III-C Learning mechanisms: Synaptic plasticity 6

III-C1 Spike Timing Dependant
Plasticity 6

III-C2 Garbage collection for plas-
ticity 6

III-D SpiNNaker Events 6

The source code of this project is available in the official SpiNNaker
repository [20].

IV Development 7
IV-A Synaptic event history trace buffers . . 7

IV-A1 Existing buffer implementa-
tion 7

IV-A2 Variable sized buffers 7
IV-B Memory compactor 8
IV-C Buffer extender 9
IV-D Scanner 9
IV-E Baker’s garbage collector 10
IV-F Generational garbage collector 11

V Analysis 11
V-A Probability of memory overflow 11
V-B Data copying methods 12
V-C Memory compactor 12
V-D Buffer extender 13
V-E Scanner 13
V-F Baker’s garbage collector 14
V-G Generational garbage collector 14

VI Future work 15

VII Conclusion 17

VIII Acknowledgements 17

Appendix A: Profiler 17

References 18

I. INTRODUCTION

Garbage collection is the art of automatic memory manage-
ment as subtly stated on the cover of the garbage collection
handbook [18]. The simplest task of garbage collection is
memory compaction (Fig 1). To demonstrate, we allocate
three objects, A, B and C on the memory heap using e.g.
malloc() in C programming language. If object B eventually
becomes inactive, i.e. the variable that used to point to it is
assigned a different address, the memory that B occupies can
be used for other purposes. The garbage collector’s task is to
enter while the main application is idle and do the following:
Remove B object from memory and re-manage the locations
of A and C in order to reclaim free space between them. After
these steps, the space that B occupied is now residing in the
whole block of free space at the end of the heap, where it
can be re-used for new object allocation.

MIKAITIS 3

Fig. 1. Basic garbage collector operation: Reclaiming memory space
occupied by a dead object B and compacting live objects A and C

It is estimated that 213 events occur on a single core in
SpiNNaker per each mili-second when simulation is run with
biological time constraints [22]. Each of these events leave
traces in the memory that are used in further simulation
activities. If memory becomes full, some of the traces will
be dropped out of memory unconditionally, even if they are
still useful for simulation results. Therefore, the research
into the automatic memory management on SpiNNaker is
interesting because the limitations of the internal memory
space of the SpiNNaker cores have many implications on a
rapid simulation activities mentioned above. This study will
provide useful insights into how memory can be managed
on SpiNNaker, and where specifically automatic management
could be useful for such architecture.

A. Goals of the project
The following points highlight the main goals of this study:
• Gain essential knowledge about SpiNNaker computer

and neural simulations in order to develop and test
applications. The background information containing the
resulting findings about SpiNNaker is provided in Sec-
tion II.

• Research two classical garbage collection algorithms:
copying collector (Subsection III-A) and generational
collector (Subsection III-B).

• Implement two aforementioned garbage collection algo-
rithms on SpiNNaker. The most important aspects of the
implementation phase are documented in Section IV.

• Investigate the most efficient copying functions that are
available on SpiNNaker. The fastest copying operations
were investigated in Subsection V-B and used in garbage
collection operations that are most dependant on copying
efficiency.

• Evaluate garbage collection on SpiNNaker, given the
memory limitations described in Section II-B2, and
biological real-time constraints of learning mechanisms
introduced in Sections III-C and III-D. The analysis is
given in Section V.

• Summarise the results of the study (Section VII) and
provide pointers for further research (Section VI).

II. BACKGROUND

The SpiNNaker project aims to create a massively parallel
million-core computer, specifically constructed for large-scale

neural network simulations, such as mammalian brain [1].
This chapter will introduce SpiNNaker in detail and identify
the main applications that it targets. Additionally, the princi-
ples of garbage collection and the purposes of implementing
it on SpiNNaker will be discussed.

A. Neuroscience

SpiNNaker is mainly targeted to Neuroscience research. For
neuroscientists, SpiNNaker provides a framework to simulate
neurons by providing a capability to describe them and their
connections in programming languages, as well as observe
the state of the neural network at any point of the running
simulation [6].

Fig. 2. A synaptic structure between neurons

One of the main applications that this project closely
relates to is in Neuroscience category. Simulating the com-
munications between neurons requires modelling synaptic
plasticity. Biological neurons are connected together with
chemical connections known as synapses. The strength of
synapses changes overtime due to synaptic transmissions, the
phenomena which is called synaptic plasticity. This scheme is
demonstrated in Fig. 2, where channel labelled ”Synapse” is a
synaptic structure between neurons that allows transmissions
to take place (More specific type of plasticity is described
in Sec. III-C1). In order to keep track of the progress of
the simulation, SpiNNaker implementation stores information
about each transition, and this information is further called
history traces or post event traces of the neuron. Due to lim-
ited space on SpiNNaker hardware, we come to the memory
management requirement: more neurons mean more history
traces and therefore the higher storage requirements. In order
to utilise the limited memory space most efficiently, we
must manage the memory heap while the memory dependant
application is running. At this point we start observing the
need for an efficient garbage collector.

B. SpiNNaker Computer

In this subsection, the main details of the SpiNNaker chip
will be briefly covered in order to demonstrate the limitations
of the computer. The most important parts for this study are
different memory types that are available on the chips.

4 REAL-TIME GARBAGE COLLECTION, SPINNAKER

Fig. 3. SpiNNaker Chip

1) SpiNNaker Chip: SpiNNaker chip is made out of 18
ARM968 processors as well as a block of shared SDRAM
of 128Mbytes. One of the cores is occupied with the SpiN-
Naker operating software and another one is used to improve
the manufacturing yield. Therefore, 16 out of 18 cores are
available for user applications. The software, that is used
to implement and run simulations, allocates the neurons and
other significant bits of the simulation to the 16 remaining
cores. The allocation choice is made by considering the type
of the simulation, e.g. size of the data structures that it
requires. Typically each ARM968 in the SpiNNaker chip will
be allocated up to 255 neurons.

2) ARM968 Core: ARM968 contains 64Kbytes of data
storage memory, DTCM1, and also 32Kbytes of instruction
memory, named ITCM [9]. The compiled binary is down-
loaded onto ITCM and any data structures that are used while
user’s application is running, are stored in DTCM. DTCM is
the main area of interest in this study as this is the memory
space where allocable heap resides, and where hundreds of
history traces are recorded while simulation is running. The
available memory for a simulation is smaller than 64Kbytes
as some space is reserved for a processor stack along with
static uninitialised variables.

3) SpiNNaker Toolchain: SpiNNaker Application Run-
Time Kernel(SARK) [9] is SpiNNaker’s operating system
that is loaded into ITCM together with user’s application. It
contains various libraries from standard C, that are optimised
for SpiNNaker, as well as special functions to assist with event
driven programming model2.

1TCM - Tightly Coupled Memory. TCM is very close to CPU as it can be
accessed on every cycle. Contrary to the ordinary memory, there are no caches
involved when accessing TCM thus avoiding any indeterminacy associated
with caches [21]

2In the event driven programming model, the flow of application is driven
by interrupts that are caused by certain events, e.g. a clock tick or a receipt
of data packet.

In order to run application on SpiNNaker, the source code
written in C is cross-compiled3 into SpiNNaker’s binary file
of format .aplx [12]. The compilation process is done using
GCC or ARMCC compilers [11]. It is then linked together
with SARK and other libraries from SpiNNaker’s code base.

4) Development infrastructure: In order to test applica-
tions, the development board was accessible (Fig. 4). It con-
tains 4 SpiNNaker chips that together comprise 72 ARM968
cores [10]. The board is connected to a host computer
using Ethernet interface and host-side applications exist to
communicate to the board from a machine running Linux,
OSX or Windows operating systems.

There are various developer applications created to com-
municate with the board, that allow developer to load the
application and investigate it’s activities while it is running on
SpiNNaker. Ybug [13] is an application written in Perl that
allows to observe status of a loaded application, or download
memory information from the board, given a core address
and a memory location. For this project, Ybug was mainly
used to observe how memory contents are changing while
garbage collection is running on a single chip. Other higher
level interfaces exist that can be used to conveniently load
applications on hundreds of cores at once, by projecting C
binaries into data structures resembling maps or networks.

C. Fundamentals of Garbage Collection

Garbage collection is a technique of optimising memory
without interference of the programmer. One of the first
examples of garbage collection can be recognised in the early

3Cross compilation refers to compiling an application on one architecture
with the intention of running it on a different architecture. In our case, an
application is compiled on x86 host machine while targeting ARM968 on
SpiNNaker.

Fig. 4. 4-Node SpiNNaker development board

MIKAITIS 5

implementation of LISP programming language. The basic
principle was detecting the non-free registers that are not
referenced from anywhere in the application. Such a register
may be considered abandoned by the program, because its
contents can no longer be found by any process on the
machine; hence we would like to reclaim the space, that the
unused register occupies and recycle it for further use [2].
It is also common to demonstrate the principles of garbage
collection by giving examples of well known programming
languages. For example, we usually state that C is non-
garbage collected language, i.e. programmer reclaims unused
memory by using a function free(). On the other hand, Java
has a large set of garbage collection techniques, and by
default, garbage collection occurs as soon as programmer
changes the only reference to a specific object to point to
a different object.

In the late 1990s and early 2000s, a commercial adop-
tion of programming languages allowed Real-Time garbage
collection to be invented. Real-Time garbage collection is
required when the specific system is considered to be a real-
time system: object creation and access times of those objects
are in the specific time boundaries [3]. A common example
is a control of an aeroplane, where the delay between pilot’s
command and the occurrence of the action must be as minimal
as possible. Because of this, in any given time window,
garbage collection has to occur in an organised manner so
that it would not violate the running periods of the mutator4.
Conversely, the classical garbage collection is often called
stop-the-world, since it pauses the execution of the mutator
for the entirety of garbage collection duration before allowing
it to continue execution.

D. Real-Time collection

As SpiNNaker has no global means of synchronisation,
simulations are required to run in real-time. [1]. Therefore,
SpiNNaker can be described as a hard real-time system,
i.e. a system that upon receiving input events (e.g. neuron
action descriptions) must make appropriate actions in a timely
manner (e.g. send out all the packets to post event neurons
before another time tick interrupts) [4].

Figure 5 demonstrates the mutator utilisation boundaries
in real-time system and stop-the-world system. It can be
observed that mutator stops at t0 and must start at t1. In real-
time garbage collection, the given time window is respected as
opposed to stop-the-world garbage collector, which stops the
mutator for as long as it needs. Therefore, the following non-
functional requirements can be established: real-time garbage
collector must be optimised in such a manner, that would
allow it to finish any collection processes before mutator
operations take place at specific times; following from that,
real time garbage collection process has to run more often,
but respect the idle times of the mutator operations, as only
at those idle times it can enter to collect garbage.

4An application that has allocated a set of objects and is periodically
reading and writing them is called mutator. Mutator and collector are
normally separated into two different entities as first demonstrated by Dijkstra
et al [19] where two different processors were used for executing both
programs.

Fig. 5. Garbage Collection: Real-Time versus stop-the-world. Illus-
tration inspired by [15].

III. RESEARCH

In this section the foundations, upon which SpiNNaker
garbage collection is built, are laid out. Two classical garbage
collection algorithms are of interest in this study: incremental
copying collector and an optimisation of it - generational
garbage collector. This section also contains information
about synaptic plasticity, the main simulation application for
which garbage collection will be applied.

A. Copying garbage collector

One of the first ideas of real-time garbage collection was
studied and presented by H. Baker [5] with useful notes on it
written by Lieberman et al [3]. Baker proposes the available
memory space to be divided into two parts, called fromspace
and tospace (Figure 6). The memory allocation (e.g. using
malloc() in C or CONS in Lisp) is allowed only in tospace and
the garbage collection process traces the accessible objects in
fromspace, incrementally moving them to tospace. When no
objects remain in fromspace, it can be used for allocating new
objects. The operation called flip occurs which interchanges
the roles of two spaces. Thus, after the flip, tospace becomes
a free memory block that was previously labelled fromspace.

When an object is moved from fromspace to tospace, an
invisible pointer is left in fromspace that will direct any access
to tospace where object now resides. After any such access,
the reference must be updated to point directly to the new
location of the object in tospace.

When an object is evacuated to tospace, some of the com-
ponents in the object might be pointing back to fromspace.
Such pointers cannot persist as we need to recycle the
whole space that fromspace occupies. The operation called
scavenging is undertaken to remove such pointers. Scavenging
copies all objects that are referenced from the particular object
in tospace, to tospace, and updates the references. To achieve
this, tospace is divided into two parts: creation and evacuation
areas. Scavenging process linearly scans the evacuation area
of tospace, looking for the back-pointers to fromspace and
moves any objects from there to the same evacuation area

6 REAL-TIME GARBAGE COLLECTION, SPINNAKER

Fig. 6. Henry Baker’s Real-Time Garbage Collector. Illustration from
Lieberman’s original paper [3].

that the parent object resides in. Creation area is only used for
allocating new objects and thus does not need to be scavenged.

Baker’s algorithm is a simple, yet efficient solution for
garbage collection, therefore has been chosen as the foun-
dation theory for this SpiNNaker project.

B. Generational garbage collector

Lieberman and Hewitt [3] have demonstrated an improve-
ment over Baker’s copying garbage collector, by introducing
heuristic techniques to differentiate the rates of garbage
collection of different memory regions. Their main idea is to
implement a garbage collector that is based on the lifetimes
of objects, i.e. if a particular group of objects is predicted to
live in the system longer, we do not need to check whether
they are dead as often as the ones that are more temporary.

The main principles of Lieberman’s collector is to fragment
the memory into small regions as opposed to Baker’s division
into two parts. Memory regions contain two values that allow
us to control the rate of garbage collecting them: generation
number and version number. When the region becomes used
for storing objects, its generation number gets assigned a
current generation number. The current generation number
is then incremented. The garbage collection process is very
similar to Baker’s: copy all accessible objects from a region
to a new space, scavenge all back-pointers and recycle the
old space. When such region is garbage collected, its version
number (now in a new location) is incremented. As a result
of all above, the generation and version numbers tell us how

old the region is and how much it was garbage collected.
These two numbers allow to predict how relatively temporary
or permanent the data on the specific region is, and therefore,
enables control over how often we should put our processing
power into scanning the objects in it.

The generational garbage collector is an appropriate so-
lution for SpiNNaker, specifically, for synaptic plasticity
memory management for two reasons: sequential arrival of
neuron’s spikes that allow straightforward modelling of gen-
erations, and memory regions being split into relatively small
buffers, that are equivalent to Lieberman’s regions.

C. Learning mechanisms: Synaptic plasticity

In order to demonstrate the activities that SpiNNaker un-
dertakes and the amounts of data generated while simulations
run, this section will briefly explain more about synaptic plas-
ticity and high level design principles of garbage collection
for plasticity.

1) Spike Timing Dependant Plasticity: Spike-Timing-
Dependant Plasticity(STDP) [27] is a commonly used model
of synaptic plasticity. At it’s core, STDP draws a simple
idea: a neuron is capable of receiving input spikes through
channels, called synapses, that connect it to other neurons.
Then, the input arrival a few mili-seconds before neuron fires,
leads to strengthening of that channel, whereas input arrival a
few mili-seconds after neuron fires, leads to weakening of
the channel. This change in the channel strength between
neurons is important because synaptic plasticity, in general,
is believed to be one of the main phenomena driving learning
and memory activities in the brain [26]. Storing history traces
of neurons is the main activity in plasticity simulations.

2) Garbage collection for plasticity: In a general garbage
collector, the references to the objects can be traced and the
decision made whether it is garbage or not depending on the
count of the references. In our application-specific collector,
this decision is made in a different manner, by considering the
specific data structures used in synaptic plasticity. The history
trace of synaptic event is dead when it has served its purpose
for the currently running simulation on the SpiNNaker. For
this project, we will assume that the history trace can be con-
sidered outdated after it has been in the system for 500ms (A
consequence of time constants used by Morrison et al [24]).
Noteworthy, the difference between general garbage collector
and application specific collector that is being implemented,
is that we do not consider references to the history traces but
their lifetime in the system. History traces are small values,
stored into a buffer which is allocated once, and a reference
to the buffer lives throughout the whole simulation period.

D. SpiNNaker Events

A major goal of the SpiNNaker architecture is to be able to
run brain simulations in real time [1]. SpiNNaker has a timer
which is used to manage most of the events on the system.
The main event that happens periodically is a timer interrupt,
on which neuron states are evaluated and spike transmissions
are performed [8]. The period of timer interrupt can be chosen
by the user, but most commonly it is set to 1ms. Any code

MIKAITIS 7

Fig. 7. Simulation activities that are taking place on each timer
interrupt. T - Timer, GC - Garbage Collection, S - Spike processing.
a) Activities that are marked T run for some fraction of time
per each timer interrupt. b) Spike processing events have higher
priority, therefore timer interrupt activities get spread out. c) Garbage
collection is added to each timer interrupt. d) Garbage collection
cannot be interrupted, it locks CPU, therefore some spikes get
deferred. e) Real-time violation occurs if garbage collection takes
too long and spike processing cannot finish on this timer interrupt.

that runs as part of timer interrupt must finish before another
interrupt arrives, including new garbage collection routines
introduced in this project.

When neuron potentials are evaluated on timer interrupts,
some neurons fire spikes and therefore another event on the
system, caused by arriving neuronal spikes, is spike pro-
cessing. Spike processing makes efferent neuron processors
read new information from SDRAM and store it in the
internal memory. This interrupt has a higher priority than
timer interrupt and thus it will be executed instantly, this way,
pausing timer interrupt activities.

Figure 7 demonstrates the activities that happen between
two timer interrupts. Spikes interfering the timer interrupt
will spread it out across the given period of time. If timer
does too much work while high spiking rate occurs, timer
interrupt process will not be able to finish in a given period
and synchronisation will be violated. Additionally, garbage
collection operation is atomic, because it modifies the whole
heap space, and due to this, it can defer some spikes.

I hypothesise that if garbage collection operations can be
made as efficient as possible in order not to add significant
amount of work per each timer interrupt, then the real time
requirements of the SpiNNaker system will be met. If there is
a need to defer spike processing by some fraction of a mili-
second, it is allowed to do that as long as it will be processed

in the same mili-second in order not to overload the event
queue. At the end of the mili-second, another timer interrupt
will occur and before that all of the queued events must finish
processing.

IV. DEVELOPMENT

This section covers the development of the main tools for
automatic memory management as well as documents the
essential changes to current state of the SpiNNaker toolchain.
The development has been done in C programming language
because most of the SpiNNaker toolchain, including low level
operating system, is written in C. The development consisted
of 5 main software components that are documented below.

A. Synaptic event history trace buffers

The history traces of synaptic events are stored on the
DTCM heap in order to have the best update speed when
neurons fire. In this subsection the implementation of buffers,
that are used to store traces, is documented. Additionally, the
changes to buffer mechanism are proposed that will enable
garbage collector routines to relocate the buffers to different
memory parts.

1) Existing buffer implementation: Current SpiNNaker im-
plementation of the buffer to store history traces works as
follows: the maximum number of history traces that each
neuron can generate and store is controlled by a macro called
MAX POST SYNAPTIC EVENTS and is currently set to 16.
These blocks of 16 history traces are then allocated to a
certain number of neurons and are accessed for updating
as a standard C array structure. Each buffer contains two
arrays called times[] and traces[], which are of fixed size,
and can store number of elements controlled by the macro
MAX POST SYNAPTIC EVENTS. Additionally, each buffer
also contains an integer number counter, which indicates how
many times and traces are currently stored in the buffer.

2) Variable sized buffers: In order to do garbage collection
we must be able to relocate the objects in the memory heap.
However, with the implementation of a standard C array the

Fig. 8. Implementation of post event history trace buffers

8 REAL-TIME GARBAGE COLLECTION, SPINNAKER

Fig. 9. Experimental synaptic history trace buffer structure

base address of the array is constant and therefore cannot
be updated [17]. The solution to this is to allocate memory
in DTCM heap using sark malloc() from SARK library and
keep a record of the pointer to it, in order to access the
elements. In this way we are able to update the pointer to
point to a new location. If memory is copied correctly from
one location to another, and the reference is updated, the
higher level application will be able to access data without any
noticeable change. This proposal is demonstrated in Figure
9. Each buffer now contains times* and traces* pointers
instead of fixed size arrays as shown in the previous section.
Additionally, new variable size is introduced in order to find
the end address of each buffer and allow variable sized
buffers.

B. Memory compactor

One of the most basic techniques to manage memory is
memory compaction. Memory compactor processes memory
heap at certain periods and it has a capability of moving
objects from their original locations. There are 2 main re-
quirements for an effective and secure memory compactor,
one functional and one non-functional: 1) After compactor
finishes, all objects on the heap must be in a single consecu-
tive block followed by a free block of memory (if any left) and
2) On any successful move operation of the memory block,
compactor must update all references to this block. This must
be done independently from the user’s application that will
be using the reference to access the relocated block.

The limitations of DTCM are influencing the design of

compactor significantly. Due to highly limited memory space
of 64KB, the DTCM heap is almost fully filled with post trace
buffers as well as other essential data required for synapse
dynamics and neuron implementation. Therefore, there is no
working space left for the intermediate working storage that
memory compaction requires. The solution would be to shift
all objects down in a sequence, but that would require a sorted
list of object references, and sorting operation on each cycle
would be too expensive. The decision was made to experiment
whether it is possible to do it using shared SDRAM, where
enough memory space is available for the compaction.

The memory compactor works as follows: each neuron’s
buffer is copied to a pre-allocated space on SDRAM. Any free
holes in the memory are not taken by the copying operation
and the result is a single consecutive block of buffers in
SDRAM. Then, the whole consecutive block of buffers is
copied back to DTCM, starting at address that was originally
allocated for the purpose of storing post trace buffers. The
references to each neuron’s buffer are then updated and
therefore the mutator application can continue adding traces to
the buffers. As a result, all of the previous data with memory
holes in it is overwritten and thus recycled.

Figure 10 demonstrates the high level detail of the memory
compaction operation. The illustration shows the first state of
DTCM heap containing memory blocks scattered around the
heap which is transformed into a single consecutive block
after using compaction.

The specific implementation of compactor in SpiNNaker
considers post-event history trace buffers that were presented
in section IV-A, as atomic objects. In order to understand the
start and end addresses of the buffer, compactor refers to the
special variables stored in the buffer, i.e. start address and size
of the buffer. Therefore, a non-functional requirement can be
identified: the size variable of each buffer must be strictly
managed by other parts of garbage collection in order for the
compaction operation to recognise correct data regions for
copying. As a result, the data will neither be violated by the
compaction operation nor will any extra, unused data will be
preserved.

Fig. 10. A visualisation of the compactor

MIKAITIS 9

Fig. 11. Steps for dynamic buffer extension

C. Buffer extender

In order to use the space of the buffers, that are not filled
completely, more efficiently, the proposal is to initially set the
initial number of events to a small number and extend each
buffer that needs more space, dynamically. If there is a buffer
that needs to add a trace, but is already full, copy the buffer to
the end of the data structure of all buffers, into the allocated
extra space, and update the reference of it. Relocation of
buffers requires to update their base addresses. This is a direct
application of the experimental buffer structure proposal that
was introduced in Section IV-A2.

Figure 11 demonstrates the steps of buffer extension in
detail. In step 1 we move the buffer to the end of the data
structure, where arbitrary size of extra storage is allocated
specifically for buffer extension. In this case, the variable size
has a specific use: as the sizes of objects in this data structure
are varied, we must keep track of them to decide how much
bytes of each buffer to copy when required. After step 1, the
previously used space is now marked X and therefore should
be recycled by garbage collection. In step 2, the pointers
times* and traces* of the relocated buffer, are updated to
point to the new location of the buffer. At this point the
buffer extension can be done in order to make space for a
new history trace. Therefore, in step 3, all traces are shifted
down to make space for an entry in times*. In step 4, new
space is introduced from the preceding steps for times* as well
as new space at the end, for traces*. In step 5, the pointer
traces* is moved down to point to the new location of the
shifted data structure.

When the extension is finished, mutator detects that there
is till more space to add the history trace and it is done in
the standard way:

t i m e s [c o u n t e r ++] = new time ;
t r a c e s [c o u n t e r ++] = n e w t r a c e ;

The allocation of extra space at the end and gaps in the
memory left from relocating the buffers, poses new research
questions. If we allocate a bigger chunk of extra space the
rate of compaction operation can be lowered because memory
gaps do not need to be re-used as early. On the other hand, if
there is not much space available for allocation of extra space,
we must compact more often in order to re-use the gaps left
from the buffer extension operations. Additionally, allocation
of a bigger chunk of extra space means that less space is
available for initial neuron data structures, and therefore, it
will mean that a number of neurons per core will have to be
decreased. To sum everything up, the relationship between R
- Rate of compaction, N - Number of neurons and E - Extra
space allocated is indirectly proportional:

E ∝ (R×N)−1 (1)

It is most likely that these settings will need to be different
for the different simulation environments. To identify a func-
tional requirement, the users must be able to tune all garbage
collection parameters identified above.

D. Scanner

Scanning is the main operation that finds garbage on the
heap and recovers the memory space that the outdated objects
occupy. Scanning operation is demonstrated in Fig. 13.

In step 1, the buffer that is being scanned is coloured.
Every trace is checked from oldest to newest or from index
0 to counter respectively. In step 2, the outdated trace at
index 0 is identified and therefore must be recycled. First, the

10 REAL-TIME GARBAGE COLLECTION, SPINNAKER

Fig. 12. Generational garbage collection at two specific time instants. The oldest trace time was set to current time − 500ms. The
generation step is 50ms. All traces are additionally categorised into two higher level generations, old generation and new generation similarly
as demonstrated in Garbage Collection Handbook, Chapter 9 [18]. At any point in time, the current buffer (marked light colour) that is
garbage collected, may contain both new and old generation traces, but only old traces are removed from the system. The generations that
are marked darker colour are already collected and will not be checked again as all newer traces will only be added to newer generations
as dictated by the increasing simulation clock.

pointer times* is advanced in order to remove the outdated
entry from the range of the buffer. At this point, the trace
entry must be removed from the traces* buffer. In step 3, this
is demonstrated as shift up of all traces from index 1. This
way the trace at index 0 is overwritten and therefore garbage
collected.

After undertaking all above steps the scanner leaves the
buffer in a state that is demonstrated in step 4, Fig. 13. Two
blocks are now marked ”Memory gap”: One at the start of
the buffer, reclaimed by garbage collecting the array times*
and one at the end from garbage collecting the array traces*.
These memory gaps are expected to be made re-usable by
the memory compactor. However, in order to achieve that we
must, as an addition to advancing the pointer times*, reduce
the overall size of the buffer by decreasing sizes of the two
memory gaps from the variable size. This way, the compactor
will detect only those traces that are in the range times* +
sizeof(buffer) so that memory gaps would be overwritten with
useful data from the surrounding buffers.

E. Baker’s garbage collector
The compactor and scanner in subsections IV-B and IV-D

respectively form a variant of Baker’s real-time garbage
collector described in subsection III-A. The only difference
between original H. Baker’s proposal and ours is that we do
not split the memory heap into two in order to achieve seam-
less switch between two spaces when one gets filled. Instead,

Fig. 13. Garbage collection: Scanning history traces. The objects
marked dark grey colour and X are outdated objects that will be
garbage collected.

MIKAITIS 11

our compaction operation, equivalent to Baker’s copying from
one space to another, is copying to and from SDRAM at once
so there is no need for a switch. The performance of this
garbage collector is provided in Sec.V-F.

F. Generational garbage collector

Baker’s garbage collector suffers from the need to linearly
scan the whole memory space to find garbage. Similarly, our
variant of garbage collector looks for outdated traces in every
buffer. I.e. If simulation has 255 neurons per core, 255 buffers
will be checked on every scanner iteration. That results into
255 accesses to the stack to retrieve the addresses to the
buffers.

Instead of scanning all the buffers, they can categorised into
specific groups, further called generations (Fig.12). Which
buffer is put into which generation depends on how likely
they can contain outdated traces: older generations contain
buffers with high probability of having garbage in them. We
will make this decision according to the simulation clock
and the time entry of the oldest trace in a particular buffer.
We start by setting how much generations will be used in a
macro GENERATIONS TO USE. Then the generation step
can be calculated in a following way, given the duration
of the simulation: generation step = simulation clock ticks
/ GENERATIONS TO USE. The generation step will be
used to create different generations as the simulation time
progresses. At the time of adding the first trace into the
buffer, we get current simulation clock tick and calculate the
current generation that that time lies in: generation to add to
= ceiling(current time / generation step) and therefore add
the buffer to this generation. Additionally, we keep track
of the variable oldest trace time at all points in time. This
variable defines the oldest trace time that is still considered
useful for the simulation purposes. Any trace that is older
than that can be recycled.

The scanner then works in the following way: it calculates
the current generation that the oldest trace variable lies in
by again using the ceiling function defined above. It then
loops through all the buffers that are in that generation
looking for garbage. Any other buffers that are in younger
generations are not looked at as we can be sure that they do
not contain traces older than all the traces in the currently
garbage collected generation. When the buffer is found to
have garbage in it, the usual scanner operation is undertaken
to remove outdated history traces. However, in this garbage
collector we additionally need to remove the buffer from the
generation and add it to the younger generation. This is done
by considering new oldest trace that garbage collected buffer
contains after the garbage was removed from it.

V. ANALYSIS

This section analyses the implementation of garbage col-
lection on SpiNNaker. The investigation in the performance of
copying methods and run times of different parts of garbage
collection are provided.

All analysis in this section was done by running a specific
simulation from SpiNNaker’s code base. It was set to contain

2500 neurons with a timer interrupt period of 1ms. Such a
simulation uses a single SpiNNaker chip on the developer
board and occupies 10 ARM968 cores in that chip resulting
in 10 copies of the garbage collector running at once. All the
performance statistics were done using the simulation data
from all 10 cores. Noteworthy, the simulation has random
input delays, therefore every run can demonstrate different
behaviour, which is especially visible in the plotted graphs.
The running times were evaluated using a profiler that is
demonstrated in Appendix A and also used in [23].

A. Probability of memory overflow

There is a consideration to be made about the predicted
improvement that dynamic buffer extension(IV-C) introduces
into the system. Let us consider what is the likelihood that
at some point the simulation will run out of memory. The
probability that this will happen is equivalent to the proba-
bility that one of the buffers will reach it’s maximum limit.
Therefore, for a simulation with n neurons and a probability
distribution of a discrete random variable (number of traces
in the buffer at an arbitrary point in time) p:

Poverflow =

n∑
i=1

pi (2)

Assuming that simulation is set up to contain 10 neurons and
a maximum of 16 traces in each buffer, the probability that at
any particular time of observing the history trace counter x,
we will have 16 traces in it is 1/16. Therefore using equation
2 we get:

Poverflow =

10∑
i=1

1

16
=

10

16
= 62.5% (3)

with the expected value of the number of traces in the buffer:

µx = x1 × p1 + x2 × p2...× x16 × p16 = 8, 5 (4)

where p is a probability distribution and x1...x16 are all
possible values of x. The variance is then:

V ar(x) =
1

16
×

16∑
i=1

(xi − µx)
2 = 21, 25 (5)

We may now calculate the same values for the new im-
plementation with dynamic buffer extension. The probability
of overflowing the memory is now the probability that the
overall number of traces in the heap will reach the maximum.
Therefore, for n neurons and k maximum traces (including any
extra space allocated) we get:

Poverflow =
1

n× k
(6)

Again taking an example of n=10 and k=16 as before, we get:

Poverflow =
1

160
= 0.625% (7)

where the expected value of the overall number of traces X
on a core, is the sum of expected values of all buffers:

12 REAL-TIME GARBAGE COLLECTION, SPINNAKER

µX =

10∑
i=1

µi = 10× µx = 85 (8)

and the variance of the overall number of traces X at an
arbitrarily chosen point in time is the sum of variances of
the number of traces in each buffer:

V ar(x1 + ...+ x10) =

10∑
i=1

V ar(i) = 10× V ar(x) = 215.5

(9)

B. Data copying methods
In this subsection, various methods of copying data be-

tween ARM cores and SDRAM are analysed. The expected
performance analysis of various copying methods in terms of
numbers of machine instructions is provided.

1) sark mem cpy() and standard memcpy(): Various im-
plementations of memory copying functions exist, both from
standard C libraries, like memcpy() as well as SpiNNaker
implementations sark mem cpy() and spin1 memcpy(). Both
sark mem cpy() and spin1 memcpy() copy memory byte by
byte, either by treating memory region as char* array, which
is byte size or using ARM instructions LDRB and STRB that
stand for loading and storing a byte. It is also essential to
note that memcpy() compiles to LDR and STR instruction
loops, that load and store whole words of 4 bytes on each
iteration. Because SpiNNaker implementations copy byte by
byte, it takes approximately 4n instructions to copy a block
of n bytes.

2) Direct Memory Access: Each ARM core on the SpiN-
Naker chip contains a DMA(Direct Memory Access) con-
troller [7]. DMA controller is used to move data between
I/DTCM and SDRAM without requiring CPU. The current
implementation of DMA preparation function in SpiNNaker
code base, takes 78 ARM instructions to prepare a transfer.
The speed of memory transfer using DMA controller is
estimated to be around 15 ns/word [14].

3) ARM block copy: An implementation of ARM block
copy [25] is provided as part of this project. It achieves more
effective copying operation for block sizes that are multiple
of 4 words. Each iteration of ARM block copy routine copies
4 words or 16 bytes with a single instruction. If the number
of words in a given block is not a multiple of 4, the remaining
words are copied one at a time. Using this method, the number
of instructions to copy the block of n bytes is denoted by the
following equation:

4(b n
16
c+ dn (mod 16)

4
e) + 9 (10)

Taking, for example, a block of size n=68, we will be doing 4
iterations of quad-copy (copy four words, or 16 bytes at once)
and a single iteration of word-copy to copy remaining 4 bytes.
Using equation 10, the number of instructions it would take
to copy 68 bytes of memory is:

4(b68
16
c+ d68 (mod 4)

4
e) + 9 = 4(4 + 1) + 9 = 29 (11)

0 200 400 600 800 1,000
0

200

400

600

800

1,000

Size of data block [bytes]

N
um

be
r

of
in

st
ru

ct
io

ns
ru

n

ARM block copy
sark mem cpy

DMA

Fig. 14. Growth of the number of instructions required to copy data.
For comparison, single byte, multiple word and DMA growths are
provided.

4) Statistical comparison of copying methods: Fig. 14
demonstrates the growth of the number of instructions run for
different copying functions. From the diagram, the following
analysis can be done: ARM block copy is more efficient
than sark mem copy due to data parallelism; ARM block
copy is the most efficient method of copying data of up to
approximately 250 bytes; DMA is more efficient of copying
data blocks bigger than 250 bytes.

Due to different speeds of the memories used,
SDRAM(slow) and DTCM(fast), number of instructions run
is not enough to indicate most efficient copying operations
and in what scenarios to use which operation. It is estimated
that data access from ARM core to SDRAM takes 100ns
but varies according to the contention on the bus [14], [16].
We shall now proceed with the evaluation of the run time
performance of functions that are using the aforementioned
copying routines.

C. Memory compactor

Memory compactor was introduced in Sec. IV-B. In this
subsection, the performance analysis of the compactor is
provided.

1) Timing performance: Table I summarises the time it
takes to compact the memory with differently sized history
trace buffers used and different numbers of neurons per core.
From the given run-times it is evident that the fastest copying
routine is ARM block copy with standard C memcpy() show-
ing slightly smaller performance. Sark mem copy is imprac-
tical in this case, due to byte by byte copying. Additionally,
DMA is slower because our atomic data elements are of small
size.

To sum up the results, for the compaction operation, ARM
block copy is best suited to copy small data blocks, therefore
it will be used for copying individual neuron buffers to
SDRAM. On the other hand, DMA is best suited to copy

MIKAITIS 13

type of simulation ARM Block Copy memcpy DMA sark mem cpy
40/4/32b 0.039 ±0.0013 0.044 ±0.0005 0.064 ±0.0 0.146 ±0.004
255/4/16b 0.4 ±0.08 0.66 ±0.08 0.91 ±0.09 1.7 ±0.1
255/4/32b 0.95 ±0.043 1.06 ±0.13 1.07 ±0.13 3.87 ±0.09

TABLE I. Average running times of the compaction operation. The time is expressed in mili-seconds and standard error is also provided.
The run-times were evaluated by running compactor more than 20 times. Each row represents the type of simulation, with the parameters,
respectively: number of neurons per core, number of history traces in the buffer and the initial size of the buffer. It is worth to note that a
lot of buffers are extended as simulation progresses, and therefore the final size can be larger than initial size. Each column represents the
copying method used to copy each buffer to SDRAM. Reading the whole block back to SDRAM was done in a single DMA call in all of
the cases.

big blocks (more than 250Bytes, as established above), thus
it will be used to copy all blocks back to DTCM.

2) Improving compactor: The timing performance shows
that the compaction operation, in the most common case
of 255 neurons, runs for 400-900 micro-seconds. As this is
close to 1ms, it would violate real-time requirements of the
SpiNNaker system (III-D). Therefore, the compactor’s work
must be divided into smaller chunks, i.e. the working space
will be divided into 4 or more regions and on each call of
the compactor only one of the regions will be compacted, but
different region each time. The downside of this approach is
that a single compaction of the whole memory heap must be
distributed across different timer interrupts.

The implementation of the fragmented compactor has
been provided and in order to control the size of the
memory work space, the value of the macro called COM-
PACTOR FRAGMENTATION FACTOR is manipulated. This
macro defines the number of parts that the memory space
will be divided into, and at the same, the number of times
the compactor must be run in order to compact the whole
heap.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Compactor work space division factor

R
un

-t
im

e
(m

s)

Fig. 15. Run times of the single invocation of the compactor as
values of the compactor space division factor are increased.

Fig. 15 demonstrates that the most useful factors that
critically lower the running time of the compactor are from
2 to 8. Further factors do not provide a significant run-time
decrease as well as require many invocations to compact the
whole memory space.

D. Buffer extender
The buffer extender (IV-C) operates by copying a single

buffer and shifting elements down by a small number of bytes.
Table II summarises the running times of extension operations
with various, differently sized buffers.

type of simulation ARM Block Copy sark mem cpy
4/16b 1481 ±140 1831 ±188
4/32b 1598 ±178 1918 ±141
12/56b 2084 ±163 2518 ±236

TABLE II. Average running times of the buffer extension (ns) for
different copying methods and different simulation types. Type of
simulation parameters are, in order: initial number of traces and size
of the buffer.

On average, the extender is called 3.5 times per SpiNNaker
time step thus it approximately occupies 1% of the time avail-
able in a single timer interrupt. Additionally, there is not much
difference between ARM Block copy or sark mem copy() as
both of them give similar results for the buffer extension op-
eration. This is the result of extender doing only a single copy
operation making other operations, like finding the addresses
and shifting elements, more significant than copying.

E. Scanner
The scanner, that was introduced in section IV-D, is doing a

significant amount of work, while linearly scanning all of the
buffers and then shifting the array elements of the buffers that
are found to contain garbage. Noteworthy, history traces are
added into buffers in the ascending order according to their
time entry. Due to this, if we find that a trace is not old enough
to be garbage, we can safely stop there instead of scanning
rest of the traces in the array, as all of the subsequent traces
will be younger. As a result, our linear scanning operation
is not fully scanning the whole heap most of the times. In
comparison, general garbage collectors, that manage any kind
of objects must scan every object on each invocation, due to
objects not possessing any relationship or order. The run times
of the scanner are summarised in Table III.

type of simulation time (ns)
40/16/64b 3870 ±20
40/16/128b 3913 ±28
255/4/16b 36578 ±1410
255/4/32b 43171 ±1645

TABLE III. Running times of the scanning operation (ns). Type
of simulation parameters are, in order: number of neurons, initial
number of traces and size of the buffer.

We can observe that scanner takes more time to execute
as the number of neurons increases. This is due to the

14 REAL-TIME GARBAGE COLLECTION, SPINNAKER

fact that more neurons introduce more data structures on
the memory heap. Additionally, as simulation complexity
is increased (size of buffer increases), element shifting is
introduced which causes processor to spend additional few
thousand nanoseconds for executing scanning operation.

F. Baker’s garbage collector

With all the above tools developed, the variant of Baker’s
garbage collector, that was described in section IV-E, can be
evaluated.

1) Memory space reclaimed: In figure 16, demonstrated
are the numbers of bytes reclaimed per each scanner invo-
cation for scanning rates 1 kHz and 0.5 kHz. When the rate
is 1kHz, i.e. 1 scan per timer interrupt, a lot of cycles are
wasted by reclaiming 0 bytes. When the rate is decreased to
0.5 kHz, to scan the memory on every other timer interrupt,
we recycle more garbage on each iteration but produce less
wasted scan cycles. Therefore, if we keep decreasing the rate
of scanning, we will increase the number of bytes reclaimed
on each iteration and decrease the number of wasted scans.
In figure 17, the rate of 0.25kHz produces no wasted scan
cycles in the simulation period 800-1000 ms.

2) Memory space utilisation: Figure 19 shows the memory
occupation as a simulation progresses, for both garbage col-
lected and non-collected approaches. The memory utilisation
in non-garbage collected environment is constantly increasing
as simulation progresses and would eventually reach the limit
of the allocated memory. On the other hand, the memory
usage in garbage collected run jumps to around 4KB at the
start and eventually stabilises to approximately 2.5Kb starting
with 501ms. Following this, I hypothesise that more neurons
could be fit into a single core with enabled garbage collection.
If we assume that we have space available for 255 neurons
with 12 traces for each, with an additional 3 traces of extra
space, the overall space available is:

255×(12+3)×TRACE SIZE = 255×15×4 = 15.3KB
(12)

This result indicates that theoretically, we can fit four times
more neurons that will stabilise to the garbage collected space
occupation of:

2.5Kbytes× 4 = 10Kbytes (13)

with 5.3 Kbytes left for expansion. However, the perfor-
mance of garbage collection, when number of neurons will
be increased, will be significantly lower and the real-time
requirements can be violated. Additionally, more neurons
require other structures to be stored on the core, not just the
ones that contain history traces. Future work suggestions in
this area are discussed in Section VI.

3) Meeting teal-time requirements: In order to preserve the
biological real-time execution property (III-D) of SpiNNaker
simulations, any code that is run when the timer interrupt
happens must exit before another interrupt occurs, most
commonly, after 1ms. The code in each interrupt includes
synapse processing and neuron state updates as well as newly
introduced garbage collection routines. I have evaluated that

without garbage collection, timer interrupt in, the same sim-
ulation of 2500 neurons, on average runs for 0.55 ms. When
Baker’s garbage collection was introduced with a running
frequency of 1kHz and the compactor fragmentation factor
of 4, the average run-time of a timer interrupt did not change
significantly.

Another way to check that the real-time requirements were
not violated is to investigate the running program output using
Ybug (II-B4) and detect any warnings about SpiNNaker’s
event queue. If any timer interrupt is running for a longer
period than allowed by simulation settings, other events will
not be started and thus warnings will be produced. However,
upon enabling garbage collector, no warnings have been
detected with many trial runs of the simulation.

G. Generational garbage collector

Generational garbage collector (IV-F) is the improvement
over copying collector, that tries to lower the size of the
scanning space. This is done by maintaining the structure of
generations with objects assigned to them. Then, only specific
generations are scanned for garbage, this way avoiding the
exhaustive search over all objects on the memory heap. In
this section the performance statistics of generational garbage
collector are compared to statistics of the copying collector.

1) Memory space: Memory space utilisation when using
generational garbage collector does not change when com-
pared to the basic copying collector. Figure 18 demonstrates
space reclamation as simulation time progress and figure
20 shows the overall space utilisation when simulation is
run for 5 seconds. The space utilisation again stabilises to
approximately 2,5KB.

2) Performance of the scanner: The scanner (IV-D) is
the main operation for which generational collector provides
performance improvements. The improvement is a result
of not needing to scan the whole memory space to find
outdated traces. Instead of the exhaustive scanning, just a
certain generation is scanned at any particular time that is
certainly going to have garbage in it. Table IV summarises
the improved average run times of the scanner and it can
be seen the growth is much slower than previously (Table
III). The last simulation in the table has a number of traces
decreased from 4 to 3 compared to the simulations run for
copying collector analysis in Table III. This was done because
generations occupy some space on DTCM core and did not
allow to fit 4 traces per neuron. However, it does not impact
the scanner’s performance in any way as buffers will simply
be extended to 4 traces when the limit is reached.

type of simulation time (ns)
40/16/64b 3086 ±48
40/16/128b 3049 ±51
255/4/16b 6449 ±635
255/3/24b 8624 ±640

TABLE IV. Generational collection: running times of the scanning
operation (ns). The simulation parameters are, in order: number of
neurons, initial number of traces and size of the buffer.

MIKAITIS 15

Fig. 16. Space reclaimed per each invocation of the scanner. Rates 1 and 0.5 kHz.

Fig. 17. Space reclaimed per each invocation of the scanner. Rates 1 and 0.25 kHz.

Fig. 18. Space reclaimed per each invocation of the scanner in generational garbage collector.

3) Extra memory requirements: Generational garbage col-
lector introduces more data structures on the already limited
DTCM memory block. For each generation, a new data
structure of length equal to the number of neurons, is allocated
that can store set of integers. The integers are indices of
the neurons that are currently residing in that particular
generation. Therefore, for n neurons and k generations the
space occupied in bytes will be:

n× k × sizeof(integer) (14)

As an example, in a simulation with n=255 and k=4, gener-
ational data structure will occupy 4080 bytes.

One of the solutions to reduce the memory occupied by
generation structures would be re-using the generation space
of those generations that are already too old to contain any

more objects. Another approach could be speculating5 the
maximum number of buffers that might be added into a
single generation and reducing it to occupy less memory.
An investigation of a simulation with 255 neurons per core
has shown that the average highest number of neuron history
trace buffers in a generation was 80. Generally, this number
depends on the spiking rate of the neurons in the simulation
and therefore can be speculated to save space on DTCM.

VI. FUTURE WORK

This section documents the ideas for further work related
to SpiNNaker garbage collection.

5Speculative execution is an optimisation technique of predicting the
resources required by the system, before it is executed. It is commonly used
in optimising microprocessor branch prediction. For example, speculation
would be allocating smaller number of resources than theoretical number
and detecting whether the system still works in the same way.

16 REAL-TIME GARBAGE COLLECTION, SPINNAKER

Fig. 19. A simulation with 255 neurons per core. Initial number of traces in non-garbage-collected run was 16, and for garbage collected
run it was 12, with an extra space of 3 traces allocated for each neuron. Garbage collection was set to collect all traces older than 500ms.

Fig. 20. A simulation with 255 neurons per core. Initial number of traces in non-garbage-collected run was 16, and for garbage collected
run it was 4, with an extra space of 3 traces allocated for each neuron. Garbage collection was set to collect all traces older than 500ms and
they were managed into 8 generations.

MIKAITIS 17

A. More efficient usage of DMA controller
DMA controller is an independent device, and therefore can

copy data without requiring CPU time. Further speed optimi-
sations of garbage collection could include the investigation
into parallelizing compactor operations with any other neural
simulation work that must take place. Garbage collector can
use DMA controller completely to compact data, and at the
same time allow ARM core to do spike processing instead of
locking it. In order to achieve such optimisation, a protocol
for managing memory read and write operations must be
established that will make sure that ARM core is not reading
or writing to memory which, at the same time, is being
processed by the compactor.

B. General garbage collector
This study have investigated a garbage collector specifi-

cally for implementation of synaptic plasticity on SpiNNaker.
Further work can include a general garbage collector that
will manage heap independently of the application. The main
challenge in the general garbage collector is scavenging that is
widely documented by Lieberman and Hewitt [3]. Scavenging
refers to the operation of finding all the references that point
to the memory region that was relocated as part of copying
garbage collection. Finding such references is the slowest
process of Lieberman’s garbage collector, and therefore would
require many hours of man power to implement, test and
analyse. However, the type of applications, for which general
garbage collector on SpiNNaker would be required, is not yet
clear.

C. Fitting more neurons into a core
With 255 neurons per ARM968 core, the limitations of

the DTCM are reached with 16 history traces for each
neuron stored. Future work will include the investigations
into whether garbage collection techniques introduced in this
study can provide a way to store more neurons per core.
The difficulties in this include identifying all the parts of
the SpiNNaker toolchain, that control how much neurons are
stored in each core, increasing it and investigating the effects
while enabling garbage collection. The implications of the
numbers of neurons stored in a single core are extensively
discussed by Furber et al [22], [23].

D. Other rules for finding dead objects
In this project, a rule of 500ms moving window has been

used to find dead objects: If the object does not fit into a
window from current time - 500 to current time, then it is
dead and can be recycled. Other techniques might be available
and are worth investigating. One of them could be counting
how much times history traces have been read by the synaptic
processes similarly as shown in Appendix of [24]. Then, when
a number of ’reads’ is equal to the number of synapses that
the spike associated to history trace is destined to, we are
able to throw away the trace. This technique might provide
a better rule for dead traces. However, the memory for extra
data structures required would also be a significant constraint
in this study.

VII. CONCLUSION

Two implementations of the automatic memory manage-
ment on SpiNNaker were investigated throughout this study.
First implementation was the copying collector (IV-E) that
proved to be slow due to linear search of the whole memory
heap. The second implementation allowed to improve the
first collector by managing memory into generations and
searching for garbage only in the certain areas of the memory
(IV-F). The implementation that was introduced, provides an
easy way to tune garbage collector by changing frequency
of scanning and compacting, tuning the generation step as
well as controlling the size of extra space allocated for buffer
extension (IV-C). By running and evaluating garbage collec-
tion on a development board containing physical SpiNNaker
chips, the results have shown that it does not violate the
real time of the system (V-F3). Additionally, the statistics
of memory utilisation when garbage collection is turned on
(V-F2), provided many ideas for future investigations. Last
but not least, the source code was contributed to the official
SpiNNaker repository which will allow SpiNNaker users
to consider the use of garbage collection for simulations
of synaptic plasticity, and will be a foundation for further
research in the automatic memory management.

SpiNNaker is a very young architecture with many non-
standard technologies, thus it presented a steep learning curve
at the start of the project. Because of this, some of the
project activities, that were laid out in the initial project plan,
eventually did not fit into the schedule. More investigations
could have been done for finding the use cases for garbage
collection on SpiNNaker. This would require more time for
collaborating with the SpiNNaker team as well as users.
Additionally, garbage collection introduced changes to some
parts of the current SpiNNaker toolchain (IV-A2). Not enough
time was left to fully integrate garbage collection into the
main code base. It must be done by either replacing the
fixed buffers by the proposed dynamic buffers, or providing
conditional compilation directives that will allow to switch
between the two approaches.

The first ever implementation of garbage collection on
SpiNNaker, was analysed in this document. All the work that
did not fit into the schedule of this project, was also presented
for future investigations. To sum everything up, the project has
been a success, both in terms of research contribution to the
SpiNNaker project, as well as the scope of techniques learned
throughout.

VIII. ACKNOWLEDGEMENTS

I thank my project supervisor Dr. David Lester for support,
constant inspiration to learn and the introduction to learning
mechanisms. I am also grateful to the members of the
SpiNNaker team: James Knight, Andrew Rowley and Alan
Stokes for helping me to understand the programming model
of SpiNNaker and the implementation of Synaptic Plasticity.

APPENDIX A
PROFILER

Profiler on SpiNNaker [23] provides a capability of mea-
suring the time performance of particular pieces of code.

18 REAL-TIME GARBAGE COLLECTION, SPINNAKER

The main principle is to add special entry and exit calls in
the application, which will then time stamp these particular
execution points and record time stamp data into SDRAM.
At the end of simulation, data is gathered and summarised
into average run-time statistics. The usage of profiler is as
follows:

p r o f i l e r e n t r y (ENTER | <UNIQUE TAG>) ;
<F u n c t i o n s o u r c e code>
. . .
p r o f i l e r e n t r y (EXIT | <UNIQUE TAG>) ;

Then the difference between exit and enter times for this
unique tag are taken to evaluate the running time of the
enclosed program. If the program is called many times, many
time stamps are recorded and average is taken. Here is an
example output of the profiling of the compactor:

Tag : Compactor
Mean t ime : 0 . 2 6 7 6 1 4 ms
With s t a n d a r d d e v i a t i o n 0 .156149 ms
S t a n d a r d e r r o r : 0 . 0 4 9 3 7 9 ms
Mean samples p e r t i m e s t e p : 0 . 0 1 1 0 8 6
L a s t sample t ime : 9 0 2 . 0 0 0 0 0 0 ms
Mean t ime p e r t i m e s t e p : 0 . 0 0 2 9 6 7 ms

REFERENCES

[1] Steve B. Furber, Francesco Galluppi, Steve Temple, Luis A. Plana. ”The
SpiNNaker Project”. Proceedings of the IEEE, Vol. 102, No. 5, May
2014.

[2] John McCarthy ”Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part I”. Massachusetts Institute of Technology,
Cambridge, Mass, April 1960.

[3] Henry Lieberman, Carl Hewitt. ”A Real-Time Garbage Collector Based
on the Lifetimes of Objects”. MIT Artificial Intelligence Laboratory, 1983
ACM 001- 0782/83/.

[4] David Detkefs. ”A Hard Look at Hard Real-Time Garbage Collection”.
Sun Microsystems, Proceedings of the IEEE (ISORC’04).

[5] Henry Baker. ”List processing in real time on a serial computer”.
Commun. ACM 21, 4 (April 1978) 280-294.

[6] ”SpiNNaker project, http://apt.cs.manchester.ac.uk/projects/SpiNNaker/”.
APT Advanced Processor Technologies Research Group, The University
of Manchester.

[7] ”SpiNNaker datasheet”. APT Advanced Processor Technologies Re-
search Group, The University of Manchester, Version 2.02, 6 January
2011.

[8] ”SpiNNaker Software Specification and Design”. APT Advanced Proces-
sor Technologies Research Group, The University of Manchester, Version
0.0, October 2012.

[9] Steve Temple ”SARK - SpiNNaker Application Runtime Kernel”. SpiN-
Naker Group, School of Computer Science, University of Manchester,
April 2013, Version 1.30.

[10] Steve Temple ”AppNote 1 - SpiNN-3 Development Board”. SpiNNaker
Group, School of Computer Science, University of Manchester, Novem-
ber 2011, Version 1.00.

[11] Steve Temple ”AppNote 2 - Programming SpiNNaker with ARM and
GNU tools”. SpiNNaker Group, School of Computer Science, University
of Manchester, November 2011, Version 1.00.

[12] Steve Temple ”AppNote 3 - The APLX File Format” SpiNNaker Group,
School of Computer Science, University of Manchester, November 2011,
Version 1.00.

[13] Steve Temple ”ybug - System Control Tool for SpiNNaker”. SpiNNaker
Group, School of Computer Science, University of Manchester, April
2014, Version 1.30.

[14] Steve Temple. ”SpiNNaker System Software presentation slides”. SpiN-
Naker Workshop - Manchester - Sep. 2015.

[15] Michael Robert Bernstein. ”Real-Time Garbage Collection
Is Real”. Blog post on real time garbage collection:
http://michaelrbernste.in/2013/06/03/real-time-garbage-collection-is-
real.html.

[16] Eustace Painkras, Luis A. Plana, Jim Garside, Steve Temple, Francesco
Galluppi, Student Member, Cameron Patterson, David R. Lester, Andrew
D. Brown, Senior Member, and Steve B. Furber. ”SpiNNaker: A 1-W
18-Core System-on-Chip for Massively-Parallel Neural Network Simu-
lation”. IEEE Journal of Solid State Circuit, Vol. 48, No. 8, August
2013.

[17] Nick Parlante and Julie Zelenski. ”The Ins and Outs of C Arrays,
Computer Science class Handout”. Standford University, CS107, Spring
2008.

[18] Richard Jones, Antony Hosking, Eliot Moss ”The Garbage Collection
Handbook”. Chapman & Hall/CRC, Applied Algorithms and Data
Structures Series, 2012.

[19] Edsgar W. Dijkstra, Leslie Lamport, A.J.Martin, C.S.Scholten, and
E.F.M.Steffens. ”On-the-fly garbage collection: An exercise in coopera-
tion”. Communications of the ACM, 21(11):965-975, November 1978.

[20] https://github.com/SpiNNakerManchester, ”SpiNNaker project on
GitHub”.

[21] ARM Information Center: http://infocenter.arm.com/. ”Tightly-coupled
memory”. Last accessed: 12/03/2016.

[22] T.Sharp and S.Furber. ”Correctness and performance of the SpiNNaker
architecture”. Neural Networks (IJCNN), The 2013 International Joint
Conference on, 2013, pp. 1-8.

[23] Mundy, A.; Knight, J.; Stewart, T.C.; Furber, S. ”An efficient SpiN-
Naker implementation of the Neural Engineering Framework”. Neural
Networks (IJCNN), 2015 International Joint Conference on. USA: IEEE:
2015: 1-8.

[24] A. Morrison, A. Aertsen, M. Diesmann. Spike-Timing-Dependent
Plasticity in Balanced Random Networks. Neural Computation 19,
14371467(2007).

[25] ARM Information center: http://infocenter.arm.com/. ”Block copy with
LDM and STM”. Last accessed: 15/03/2016.

[26] Sadegh Nabavi, Rocky Fox, Christophe D. Proulx, John Y. Lin, Roger
Y. Tsien, Roberto Malinow. Engineering a memory with LTD and LTP.
348, Nature, VOL 511, 17 July 2014.

[27] Henry Markram, Joachim Lubke, Michael Frotscher, Bert Sakmann.
Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and
EPSPs. Science, VOL 275, 10 January 1997.

