

Some fixed-point arithmetic tricks on SpiNNaker

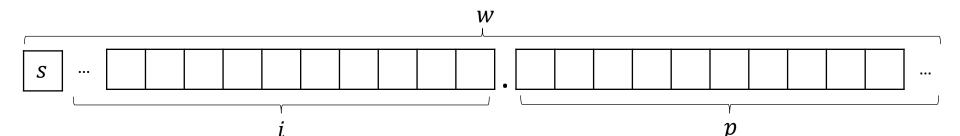
Mantas Mikaitis

SpiNNaker meeting, 26th September 2018

Contents of the presentation

- 1. Reminder of fixed-point arithmetic
- 2. Trick 1: Accum type multiplication with added rounding improves Izhikevich neuron spike lag.
- 3. Trick 2: Mixing accum and long fract types to improve the accuracy of exponential decay (expk() function)

Generalized fixed-point number representation



- *i* number of integer bits
- *p* number of fractional bits (precision)
- Range:

 $[-2^{i}, 2^{i} - 2^{-p}]$ (signed), $[0, 2^{i} - 2^{-p}]$ (unsigned) • $\epsilon = 2^{-p}$ (Machine epsilon)

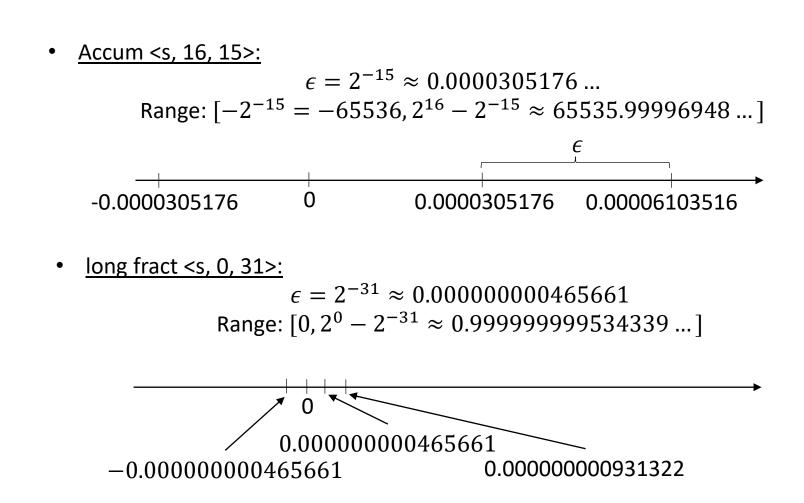
- Smallest positive value is
 c (gap between any two neighbouring numbers).
- Accuracy is measured in ϵ .
- The maximum error is: $\frac{\epsilon}{2}$

Converting to decimals:

Given a binary number: $\langle s, i, p \rangle - sI_{i-1}I_{i-2} \cdots I_0$. $F_{-1}F_{-2} \cdots F_{-p}$ If signed format and s is set, invert all bits and add 1. Then:

$$value = -\left(\sum_{k=0}^{i-1} I_k 2^k + \sum_{j=1}^p F_j 2^{-j} + s2^i\right), else$$
$$value = \sum_{k=0}^{i-1} I_k 2^k + \sum_{j=1}^p F_{-j} 2^{-j}$$

GCC types accum and long fract



Arithmetic operations on fixed-point numbers

• Addition:

< *s*, *i*, *p* >+< *s*, *i*, *p* >=< *s*, *i*, *p* >

<u>Subtraction:</u>

< s, i, p >-< s, i, p >=< s, i, p >

Note: +,- denote an integer operation, available in most of the processors, including ARM968 – special treatment is not required to implement this.

• Multiplication:

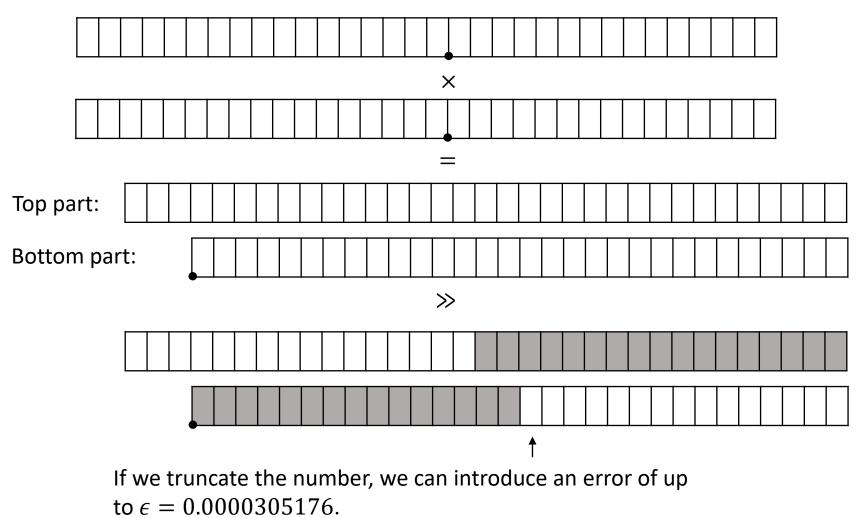
 $\langle s, i_a, p_a \rangle \times \langle s, i_b, p_b \rangle = \langle s, i_a + i_b, p_a + p_b \rangle$ Note: x denotes integer multiplication, however, if the operands a and b had the word lengths w_a and w_b , the result will have the word length of $w_a + w_b$. Therefore, we also need to shift right to put the result back in one of the operand's formats. This results in <u>loss of precision</u>.

• <u>Division:</u>

 $\langle s, i, p_a \rangle \Rightarrow \langle s, i, p_b \rangle = \langle s, i, p_a - p_b \rangle$

Note: loss of precision now occurs right away inside the integer divider. Usual solution is to pre-shift the dividend.





Rounding and its role in multiplication

• Round to nearest is a simple rounding mode: if the most significant bit of the truncated vector is set, add 1 to the result:

$$Round(IN: x, < s, i, p >) = \begin{cases} [x] & if [x] \le x < [x] + \frac{\epsilon}{2} \\ [x] + \epsilon & if [x] + \frac{\epsilon}{2} \le x < [x] + \epsilon \end{cases}$$

where $\lfloor x \rfloor$ denotes the truncation of the number x to the given fixed point format.

Rounding and its role in multiplication (Optional ARM assembly slide)

• GCC implements no rounding in the multiplication of *accums* (see comments in GCC's arm-fixed.md file):

SMULL R4, R5, R7, LR LSL R7, R5, #17 ORR R4, R7, R4, LSR #15

Trick1: Add rounding to GCC multiplication of two *accums* to improve the Izhikevich neuron

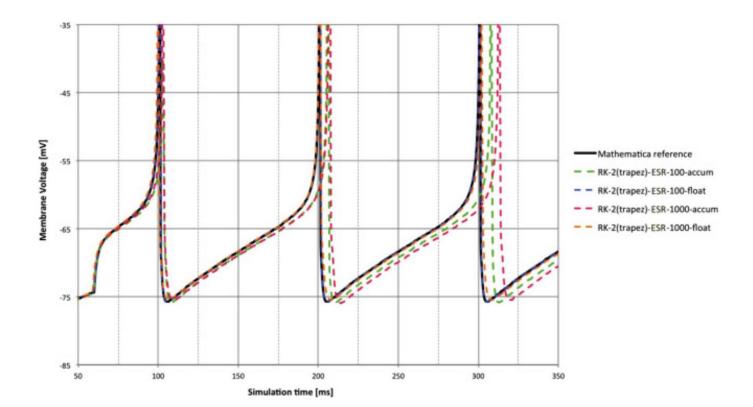
• There are 12 accum multiplications in the SpiNNaker Izhikevich neuron:

• The basic trick is to replace all of these stars with multiplications and rounding from <u>spinn_common/include/stdfix-full-iso.h</u> in the SpiNNaker code base (Careful with the order of multiplications!).

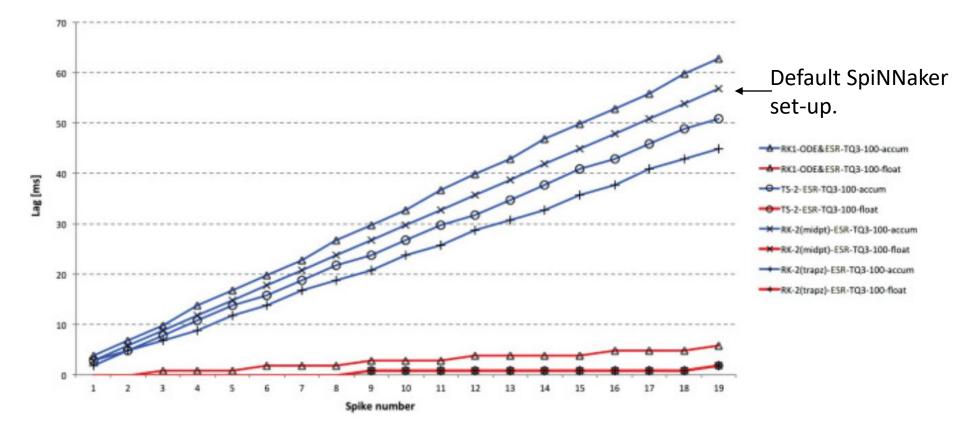
}

Spike lag in the Izhikevich neuron model (M.Hopkins and S.Furber, Neur. Comp. 2015)

 The parameters of the neuron are: a = 0.02, b = 0.2, c =-65 mV, d = 8. V=-75 mV U=0. Stimulation at 60 ms, a 4.775 nA DC current is delivered and sustained (DC input). Timestep is 0.1ms.

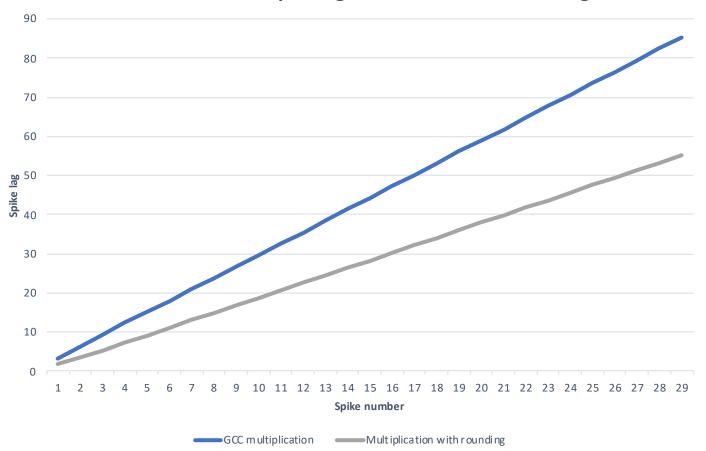


Spike lag in the Izhikevich neuron model (M.Hopkins and S.Furber, Neur. Comp. 2015)



Reduced spike lag after adding multiplication with rounding

Izhikevich neuron spike lag with and without rounding

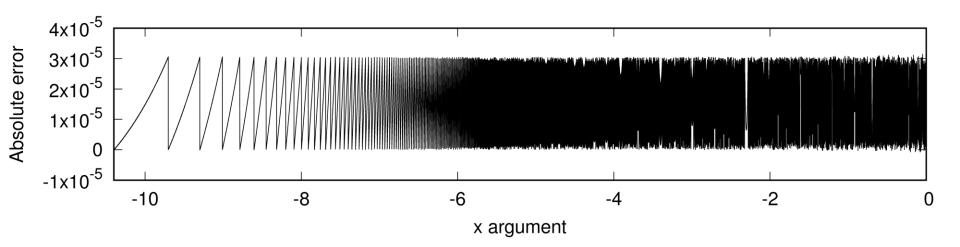


Performance overhead

- Performance of <u>neuron state update routine</u>: No rounding (GCC '*' multiplication): **1065ns** No rounding SpiNNaker spin_common (__stdfix_smul_k): **2000ns** Round to nearest (modified __stdfix_smul_k): **3100ns** (possible to reduce by writing in assembly) Float (Data from M. Hopkins and Furber, Neur. Comp. 2015): **6970ns**
- Future work: further improvements are possible for this neuron model by solving some part of the ODE in long fract format.

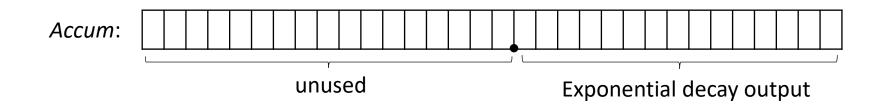
Description of expk() function

- Part of spinn_common package
- Exponential function for *accum* type with the range $x \in [\sim -10.4, \sim 11.1]$.
- If x is out of range, saturate to 0 or the maximum $accum \sim 65535.99996948 \dots$
- Absolute error measured in comparison to exp() from the C double precision library
- In the range $x \in [\sim -10.4, 0]$, in steps of $10\epsilon = 0.00030517578125$.
- The maximum error is $0.00003173828125000002 \approx 1.04\epsilon$.
- Similar hardware implementation is available in SpiNNaker2 prototype Santos



Trick2: mixing *accum* and *long frac*t to improve exponential decay

- Exponential decay is described as $X(t) = X_0 e^{-\frac{t}{\tau_x}}$, where X_0 is some initial value to be decayed in time t with the time constant τ_x .
- It is clear that only arguments x < 0 are of interest and the output is between [0,1).
- Therefore, the top part of the *acccum* word is unused, *long fract* would be a better type for the output gives 2x more bits of precision.
- How to use an *accum*-only function (expk() in SpiNNaker, or the accelerator in Santos chip) to get more precision allowed by the *long fract* type?



Trick2: mixing *accum* and *long frac*t to improve exponential decay

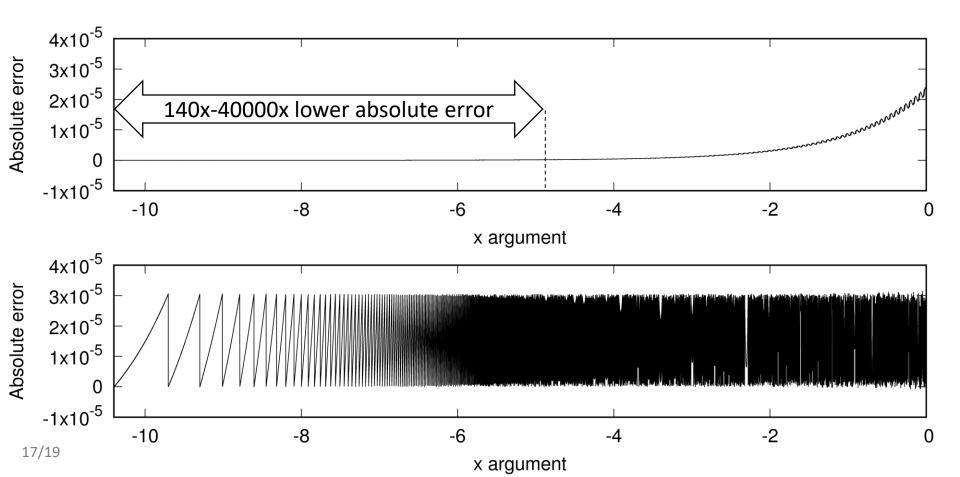
- To get exponential decay as fract, we need to arrive at $2^{16}e^x$ (Not by shifting).
- Note the property: $2^{16}e^x = e^{\ln(2^{16})}e^x = e^{16 \times \ln(2)}e^x = e^{x+16 \times \ln(2)}$.
- Now we have $2^{16}e^x$ in *accum* or e^x in *long fract*!
- I.e. the input range $x \in [\sim -10.4,0]$ is transformed to $x \in [\sim -10.4 + \ln(2) \times 16, \ln(2) \times 16]$.
- The output range is transformed to $y \in [0, 2^{16}]$ in *accum* or $y \in [0, 1]$ in *long fract.*

$$x(accum) \longrightarrow expk() \longrightarrow e^{x}(accum)$$

$$x(accum) \longrightarrow +\ln(2) + 16 \qquad expk() \rightarrow 2^{16}e^{x}(accum) \rightarrow e^{x}(long fract)$$

Absolute error of exponential decay when mixing formats

- Max error of $\sim 0.79 \epsilon_{accum} \approx 0.00002410888671875001$
- Average error is lower ~7x



Advantages and disadvantages

Disadvantages:

- Extra cost is 1x addition and some C pointer game to change the decimal point location (Do not simply cast to a *long fract*! Convert through pointers).
- Requires working in *long fract* try to utilize the bottom bits in a useful way. For example rounding to *accum*, or mixed format multiplications.

Advantages:

- Does not require implementation of another exp function for *long fract*.
- <u>Wider input range</u> of $x \in [\sim -21.4,0]$ does not saturate to 0 below -10.4 because more precision is available at the bottom of the word.
- Significantly lower error in most of the function domain.

Summary

- Two simple methods of improved accuracy of fixed-point arithmetic have been shown
- First trick works for all multiplications, not just accum.
- Exponential function trick only works for e^x for other types of functions other properties would have to be found
- It is an example of only a small fraction of what is available if some code tidiness can be sacrificed
- Next presentation on 18th December: Floating point exponential and logarithm hardware accelerator

Questions?