
Some fixed-point arithmetic tricks on SpiNNaker

Mantas Mikaitis

SpiNNaker meeting, 26th September 2018

2/19

Contents of the presentation

1. Reminder of fixed-point arithmetic
2. Trick 1: Accum type multiplication with added rounding improves Izhikevich

neuron spike lag.
3. Trick 2: Mixing accum and long fract types to improve the accuracy of

exponential decay (expk() function)

3/19

Generalized fixed-point number
representation

.… …𝑠

𝑖 𝑝

• 𝑖 - number of integer bits
• 𝑝 - number of fractional bits (precision)
• Range:

[−2𝑖 , 2𝑖 − 2−𝑝] (signed),
[0, 2𝑖 − 2−𝑝] (unsigned)

• 𝜖 = 2−𝑝(Machine epsilon)
• Smallest positive value is 𝜖 (gap between

any two neighbouring numbers).
• Accuracy is measured in 𝜖.

• The maximum error is:
𝜖

2

Converting to decimals:
Given a binary number: < 𝑠, 𝑖, 𝑝 > − 𝑠𝐼𝑖−1𝐼𝑖−2⋯𝐼0. 𝐹−1𝐹−2⋯𝐹−𝑝
If signed format and 𝑠 is set, invert all bits and add 1. Then:

𝑣𝑎𝑙𝑢𝑒 = − ෍

𝑘=0

𝑖−1

𝐼𝑘2
𝑘 +෍

𝑗=1

𝑝

𝐹𝑗2
−𝑗 + 𝑠2𝑖 , 𝑒𝑙𝑠𝑒

𝑣𝑎𝑙𝑢𝑒 = ෍

𝑘=0

𝑖−1

𝐼𝑘2
𝑘 +෍

𝑗=1

𝑝

𝐹−𝑗2
−𝑗

𝑤

4/19

GCC types accum and long fract

• Accum <s, 16, 15>:
𝜖 = 2−15 ≈ 0.0000305176…

Range: [−2−15 = −65536, 216 − 2−15 ≈ 65535.99996948…]

0 0.0000305176 0.00006103516-0.0000305176

• long fract <s, 0, 31>:
𝜖 = 2−31 ≈ 0.000000000465661

Range: [0, 20 − 2−31 ≈ 0.999999999534339…]

0

0.000000000465661
0.000000000931322−0.000000000465661

𝜖

5/19

Arithmetic operations on fixed-point
numbers

• Addition:
< 𝑠, 𝑖, 𝑝 >+< 𝑠, 𝑖, 𝑝 >=< 𝑠, 𝑖, 𝑝 >

• Subtraction:
< 𝑠, 𝑖, 𝑝 >−< 𝑠, 𝑖, 𝑝 >=< 𝑠, 𝑖, 𝑝 >

Note: +,- denote an integer operation, available in most of the processors,
including ARM968 – special treatment is not required to implement this.
• Multiplication:

< 𝑠, 𝑖𝑎, 𝑝𝑎 >×< 𝑠, 𝑖𝑏, 𝑝𝑏 >=< 𝑠, 𝑖𝑎 + 𝑖𝑏, 𝑝𝑎 + 𝑝𝑏 >
Note: x denotes integer multiplication, however, if the operands 𝑎 and 𝑏 had the
word lengths 𝑤𝑎 and 𝑤𝑏, the result will have the word length of 𝑤𝑎 + 𝑤𝑏.
Therefore, we also need to shift right to put the result back in one of the operand’s
formats. This results in loss of precision.
• Division:

< 𝑠, 𝑖, 𝑝𝑎 >÷< 𝑠, 𝑖, 𝑝𝑏 >=< 𝑠, 𝑖, 𝑝𝑎 − 𝑝𝑏 >
Note: loss of precision now occurs right away inside the integer divider. Usual
solution is to pre-shift the dividend.

6/19

Rounding and its role in
multiplication

×

=

Top part:

Bottom part:

≫

If we truncate the number, we can introduce an error of up
to 𝜖 = 0.0000305176.

7/19

Rounding and its role in
multiplication

𝑅𝑜𝑢𝑛𝑑 𝐼𝑁: 𝑥, < 𝑠, 𝑖, 𝑝 > =
𝑥 𝑖𝑓 𝑥 ≤ 𝑥 < 𝑥 +

𝜖

2

𝑥 + 𝜖 𝑖𝑓 𝑥 +
𝜖

2
≤ 𝑥 < 𝑥 + 𝜖

• Round to nearest is a simple rounding mode: if the most significant bit of the
truncated vector is set, add 1 to the result:

where 𝑥 denotes the truncation of the number x to the given fixed point format.

8/19

Rounding and its role in multiplication
(Optional ARM assembly slide)

• GCC implements no rounding in the multiplication of accums (see
comments in GCC’s arm-fixed.md file):

SMULL R4, R5, R7, LR
LSL R7, R5, #17

ORR R4, R7, R4, LSR #15

9/19

Trick1: Add rounding to GCC
multiplication of two accums to improve

the Izhikevich neuron
• There are 12 accum multiplications in the SpiNNaker Izhikevich neuron:

• The basic trick is to replace all of these stars with multiplications and rounding from
spinn_common/include/stdfix-full-iso.h in the SpiNNaker code base (Careful with the
order of multiplications!).

10/19

Spike lag in the Izhikevich neuron model
(M.Hopkins and S.Furber, Neur. Comp.

2015)

• The parameters of the neuron are: a = 0.02, b = 0.2, c =−65 mV, d = 8. V=−75 mV
U=0. Stimulation at 60 ms, a 4.775 nA DC current is delivered and sustained (DC
input). Timestep is 0.1ms.

11/19

Spike lag in the Izhikevich neuron model
(M.Hopkins and S.Furber, Neur. Comp.

2015)

Default SpiNNaker
set-up.

12/19

Reduced spike lag after adding
multiplication with rounding

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Sp
ik

e
 la

g

Spike number

Izhikevich neuron spike lag with and without rounding

GCC multiplication Mult iplication with rounding

13/19

Performance overhead

• Performance of neuron state update routine:
No rounding (GCC ’*’ multiplication): 1065ns
No rounding SpiNNaker spin_common (__stdfix_smul_k): 2000ns
Round to nearest (modified __stdfix_smul_k): 3100ns (possible to
reduce by writing in assembly)
Float (Data from M. Hopkins and Furber, Neur. Comp. 2015): 6970ns

• Future work: further improvements are possible for this neuron model by
solving some part of the ODE in long fract format.

14/19

Description of expk() function

• Part of spinn_common package
• Exponential function for accum type with the range 𝑥 ∈ ~ − 10.4, ~11.1 .
• If 𝑥 is out of range, saturate to 0 or the maximum accum - ~65535.99996948…
• Absolute error measured in comparison to exp() from the C double precision library
• In the range 𝑥 ∈ ~ − 10.4,0 , in steps of 10𝜖 = 0.00030517578125.
• The maximum error is 0.00003173828125000002≈ 1.04𝜖.
• Similar hardware implementation is available in SpiNNaker2 prototype Santos

15/19

Trick2: mixing accum and long fract
to improve exponential decay

• Exponential decay is described as 𝑋 𝑡 = 𝑋0𝑒
−

𝑡

𝜏𝑥, where 𝑋0 is some initial value
to be decayed in time 𝑡 with the time constant 𝜏𝑥.

• It is clear that only arguments 𝑥 < 0 are of interest and the output is between
0,1 .

• Therefore, the top part of the acccum word is unused, long fract would be a
better type for the output – gives 2x more bits of precision.

• How to use an accum-only function (expk() in SpiNNaker, or the accelerator in
Santos chip) to get more precision allowed by the long fract type?

unused Exponential decay output

Accum:

16/19

Trick2: mixing accum and long fract
to improve exponential decay

• To get exponential decay as fract, we need to arrive at 216𝑒𝑥 (Not by shifting).

• Note the property: 216𝑒𝑥 = 𝑒ln(2
16)𝑒𝑥 = 𝑒16×ln(2)𝑒𝑥 = 𝑒𝑥+16×ln(2).

• Now we have 216𝑒𝑥 in accum or 𝑒𝑥 in long fract!
• I.e. the input range 𝑥 ∈ ~ − 10.4,0 is transformed to 𝑥 ∈ [

]
~ − 10.4

+ ln 2 × 16, ln(2) × 16 .
• The output range is transformed to y ∈ 0, 216 in accum or y ∈ 0, 1 in long

fract.

expk()x(accum) 𝑒𝑥(accum)

expk()x(accum) 216𝑒𝑥(accum)
+ln(2)
*16

Decimal
point left

𝑒𝑥(long fract)

17/19

Absolute error of exponential decay
when mixing formats

• Max error of ~0.79𝜖𝑎𝑐𝑐𝑢𝑚 ≈ 0.00002410888671875001
• Average error is lower ~7x

140x-40000x lower absolute error

18/19

Advantages and disadvantages

Disadvantages:
• Extra cost is 1x addition and some C pointer game to change the decimal point

location (Do not simply cast to a long fract! Convert through pointers).
• Requires working in long fract – try to utilize the bottom bits in a useful way. For

example rounding to accum, or mixed format multiplications.

Advantages:
• Does not require implementation of another exp function for long fract.
• Wider input range of 𝑥 ∈ ~ − 21.4,0 - does not saturate to 0 below -10.4

because more precision is available at the bottom of the word.
• Significantly lower error in most of the function domain.

19/19

Summary

• Two simple methods of improved accuracy of fixed-point arithmetic have been
shown

• First trick works for all multiplications, not just accum.
• Exponential function trick only works for 𝑒𝑥 - for other types of functions other

properties would have to be found
• It is an example of only a small fraction of what is available if some code tidiness

can be sacrificed

• Next presentation on 18th December: Floating point exponential and logarithm
hardware accelerator

Questions?

