MANCHESTER
1824

The University of Manchester

Some fixed-point arithmetic tricks on SpiNNaker

Mantas Mikaitis

SpiNNaker meeting, 26" September 2018

Contents of the presentation

1. Reminder of fixed-point arithmetic
2. Trick 1: Accum type multiplication with added rounding improves Izhikevich

neuron spike lag.
3. Trick 2: Mixing accum and long fract types to improve the accuracy of

exponential decay (expk() function)

2/19

Generalized fixed-point number
representation

w
[|
S
\ J \
Y Y
i p
* [-number of integer bits * ¢ = 27P(Machine epsilon)
* p - number of fractional bits (precision) ¢ Smallest positive value is € (gap between
* Range: any two neighbouring numbers).

[—2, 28 — 27P] (signed),
[0,2! — 27P] (unsigned)

Accuracy is measured in €.

. . €
The maximum error is: E

Converting to decimals:
Given a binary number: < s,i,p > —sl;_q1l;_p - lo. F_1F_5 - F_,
If signed format and s is set, invert all bits and add 1. Then:

i—1 D
value = — Z Ik2k + Z sz—j + s2t |, else
k=0 j=1

i—1 14
value = 2 I 2K + z F_;27/
k=0 j=1

3/19

GCC types accum and long fract

 Accum<s, 16, 15>:

e =215~ 0.0000305176 ...
Range: [-271° = —65536,216 — 271> ~ 65535.99996948 ...]

€

A

v

[
| | | |
I |

-0.0000305176 0 0.0000305176 0.00006103516

* Jlong fract<s, 0, 31>:
e =231 2 0.000000000465661
Range: [0, 20 — 2731 ~ 0.999999999534339 e]

e
0.000000000465661

—0.000000000465661 0.000000000931322

v

4/19

5/19

Arithmetic operations on fixed-point
numbers

 Addition:
<Ssi,p>+<s,i,p >=<s5,i,p >
e Subtraction:

<si,p>-—<s,i,p>=<s,i,p>

Note: +,- denote an integer operation, available in most of the processors,
including ARM968 — special treatment is not required to implement this.
e Multiplication:

< S, lg,Pqg >X< S,lip,Pp >=<S,lg +1ip,0g +Pp >
Note: x denotes integer multiplication, however, if the operands a and b had the
word lengths w, and w,,, the result will have the word length of w, + w,,.
Therefore, we also need to shift right to put the result back in one of the operand’s
formats. This results in loss of precision.
* Division:

<S,pg >+<S,i,pp >=<S,[,pq — Pp >
Note: loss of precision now occurs right away inside the integer divider. Usual
solution is to pre-shift the dividend.

Rounding and its role in
multiplication

|
i

Top part:

Bottom part:

>

T

If we truncate the number, we can introduce an error of up
6/19 toe = 0.0000305176.

Rounding and its role in
multiplication

* Round to nearest is a simple rounding mode: if the most significant bit of the
truncated vector is set, add 1 to the result:

Round(IN:x,< s,i,p >) = 1

’

x| if[xJSx<[xJ+§

k[xj+e if[xj+£<x<[xj+e

5 =

where | x| denotes the truncation of the number x to the given fixed point format.

7/19

Rounding and its role in multiplication
(Optional ARM assembly slide)

* GCCimplements no rounding in the multiplication of accums (see
comments in GCC’s arm-fixed.md file):
SMULL R4, R5,R7, LR
LSL R7, R5, #17
ORR R4, R7, R4, LSR #15

8/19

Trick1l: Add rounding to GCC
multiplication of two accums to improve
the Izhikevich neuron

* There are 12 accum multiplications in the SpiNNaker Izhikevich neuron:

static inline void _rk2_kernel_midpoint (REAL h, neuron_pointer_t neuron,
REAL input_this_timestep) {

// to match Mathematica names
REAL lastV1l = neuron—->V;

REAL lastUl = neuron—>U;

REAL a = neuron—>A;

REAL b = neuron—>B;

REAL pre_alph = REAL_CONST(140.0) + input_this_timestep - lastU1;
REAL alpha = pre_alph

+ (REAL_CONST(5.0) + REAL_CONST(2.0400) % lastVl) * lastVl;
REAL eta = lastV1l + REAL_HALF(h x alpha);

// could be represented as a long fract?
REAL beta = REAL_HALF(h * (b * lastVl - lastUl) * a);

neuron->V += h % (pre_alph - beta
+ (REAL_CONST(5.0) + REAL_CONST(0.0400) * eta) * eta);

neuron—->U += a * h x (-lastUl - beta + b * eta);

by

* The basic trick is to replace all of these stars with multiplications and rounding from
spinn_common/include/stdfix-full-iso.h in the SpiNNaker code base (Careful with the
9/19 order of multiplications!).

10/19

Spike lag in the Izhikevich neuron model
(M.Hopkins and S.Furber, Neur. Comp.
2015)

* The parameters of the neuron are: a=0.02,b=0.2,c=-65mV, d =8. V=-75 mV

U=0. Stimulation at 60 ms, a 4.775 nA DC current is delivered and sustained (DC
input). Timestep is 0.1ms.

2 3
:
h
4 {5
ey
N
i (1
i o
' .H l|'|
5 l¢ N
S |
E Iy ,l"| o \Mathematica re ference
§' : : g RK-2(trapez)- ESR-100-accum
g " ' Ylﬂ RK-2(trapez)- ESR-100-f
é : : ,/ : I 2(trapez) ESR-1000-accum
g } $ W1 2(trapez)-ESR-1000-f)
= ll ")
\ \
{
\
\

Simulation time [ms]

Spike lag in the Izhikevich neuron model
(M.Hopkins and S.Furber, Neur. Comp.
2015)

70

' e e Default SpiNNaker
" +—
set-up.

sy a1 -QOERESR-TA3-100-accum

wd=RE1-00ELESR-TA3- 100-Ncat

- 40 T
.E =&=T5-2-£SR-TQ3-100-ac0um
5 =TS 2-ESR-TQ3-100-float
-1 . - bR Aeredipt)- £ SR -TQ - 100-accum
- Meidpt)- £5R-TQ3- 100-Noae
20 + © =R 2trap2) ESR-TQ3- 100-accum

- -
,/ Rk 2trapz) ESR-TQ3 100 foat

11/19

Reduced spike lag after adding
multiplication with rounding

Izhikevich neuron spike lag with and without rounding

Spike lag
N w H w1 [e)] ~ 0 Vo]
o o o o o o o o

=
o

o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Spike number

e G CC multiplication Multiplication with rounding

12/19

Performance overhead

* Performance of neuron state update routine:
No rounding (GCC ’*” multiplication): 1065ns
No rounding SpiNNaker spin_common (__stdfix_smul_k): 2000ns
Round to nearest (modified __ stdfix_smul_k): 3100ns (possible to
reduce by writing in assembly)
Float (Data from M. Hopkins and Furber, Neur. Comp. 2015): 6970ns

e Future work: further improvements are possible for this neuron model by

solving some part of the ODE in long fract format.

13/19

Absolute error

4x10™
3x107°
2x10™
1x10™

1x10™

14/19

Description of expk() function

Part of spinn_common package

Exponential function for accum type with the range x € [~ — 10.4, ~11.1].

If x is out of range, saturate to 0 or the maximum accum - ~65535.99996948 ...
Absolute error measured in comparison to exp() from the C double precision library
In the range x € [~ — 10.4,0], in steps of 10e = 0.00030517578125.

The maximum error is 0.00003173828125000002~ 1.04e€.

Similar hardware implementation is available in SpiNNaker2 prototype Santos

| | | | |
-10 -8 -6 -4 2 0
X argument

Trick2: mixing accum and long fract
to improve exponential decay

t
» Exponential decay is described as X(t) = Xye ™=, where X,, is some initial value

to be decayed in time t with the time constant t,.

e ltisclear that only arguments x < 0 are of interest and the output is between
[0,1).

* Therefore, the top part of the acccum word is unused, long fract would be a
better type for the output — gives 2x more bits of precision.

 How to use an accum-only function (expk() in SpiNNaker, or the accelerator in
Santos chip) to get more precision allowed by the long fract type?

Accum: l

! /

unused Exponential decay output

15/19

Trick2: mixing accum and long fract
to improve exponential decay

To get exponential decay as fract, we need to arrive at 21°e* (Not by shifting).

Note the property: 216e* = ¢
Now we have 21%e* in accum or e* in long fract!
l.e. the input range x € [~ — 10.4,0] is transformed to x € [~ — 10.4

+ In(2) X 16,In(2) x 16].

fract.

x(accum) I:>

+In(2)
*16

1n(216)ex — pl6XIn(2) px — px+16xIn(2)

The output range is transformed to y € [0, 21] in accum ory € [0, 1] in long

expk() :> e*(accum)

—

expk()

Decimal
16 X
f‘> 2 eX(accum)|$ ooint left f‘> e”*(long fract)

Absolute error of exponential decay

4x107
3x10™
2x107°
1x107

0
1107

Absolute error

4x10™
3x107°
2x10™
1x10™

0
1x107

17/19

Absolute error

when mixing formats

Max error of ~0.79€,.cym = 0.00002410888671875001
Average error is lower ~7x

< 140x-40000x lower absolute error >: ///w’d

-10

-8 -6 -4 -2 0
X argument

-10

-8 -6 -4 -2 0
X argument

Advantages and disadvantages

Disadvantages:

e Extra cost is 1x addition and some C pointer game to change the decimal point
location (Do not simply cast to a long fract! Convert through pointers).

* Requires working in long fract — try to utilize the bottom bits in a useful way. For
example rounding to accum, or mixed format multiplications.

Advantages:

* Does not require implementation of another exp function for long fract.

* Wider input range of x € [~ — 21.4,0] - does not saturate to 0 below -10.4
because more precision is available at the bottom of the word.

e Significantly lower error in most of the function domain.

18/19

summary

* Two simple methods of improved accuracy of fixed-point arithmetic have been
shown

 First trick works for all multiplications, not just accum.

* Exponential function trick only works for e* - for other types of functions other
properties would have to be found

* Itis an example of only a small fraction of what is available if some code tidiness
can be sacrificed

* Next presentation on 18" December: Floating point exponential and logarithm
hardware accelerator

Questions?

19/19

