
Real-Time Garbage Collection for history traces 
in plasticity algorithms on SpiNNaker

Mantas Mikaitis

1



Garbage collection

• Automatic memory management
• Most commonly applied to RAM where programs 

allocate many small memory blocks
• JAVA has a big set of garbage collectors
• C does not have a garbage collector by default
• On SpiNNaker, we do not have memory management of 

any sort
• Therefore memory allocation and freeing is fully 

controlled by a programmer

2



Garbage collection – simple example

A, B, C are memory objects. B is a dead object– no program 
will use it anymore. Thus garbage collector does the following 
in states 2 and 3:

Originated in
1960s in

LISP
programming

language*

3
* McCarthy, Recursive functions of symbolic expressions and their computation by machine, part I, 1960



Hard real-time systems

• Real-time garbage collection is important in hard real-
time systems

• For example, passenger jets
• In these systems mutator* must not be interrupted
• Additionally, collection must preserve correct memory 

state when exiting early
• SpiNNaker is semi-hard real-time system

* Program that is reading and writing memory
4



Semi-hard real-time system

Whole simulation time

1ms

Synapse processing Neuron processing Some delay

Synapse processing Neuron processingSome delay

Synapse processing Neuron processingSome delay

Synapse processing Neuron processingSome delay

OK

NOT OK

OK

OK

5



SpiNNaker Chip Tear-Down

18 ARM968 cores
and 128MB shared SDRAM

32KB 
Instruction 

memory

64KB Data 
memory 
(DTCM)

ARM968

Each ARM968 has a personal
Direct-Memory-Access Controller 6



Spike-Timing-Dependant-
Plasticity(STDP)

pre

post

weight*

pre post

Synapse
weight

* Additive weigh dependence. Other rules exist.
7



Simulating plastic neural networks on 
SpiNNker

Population 1 Population 2

Connections

ARM
Population 1

ARM
Population 2

Model
in PyNN

SpiNNaker

Plasticity of all connecting synapses is processed here

8



Simulating plastic neural networks on 
SpiNNker

32KB 
Instruction 

memory

64KB 
Data 

memory 
(DTCM)

ARM968

Overflow of memory can happen in history trace buffers

9



Implementation details: Main 
components

Scanner (Identify 
garbage)

Memory compactor

Garbage
collection rule

Copying collector

Generational collector

Classify 
buffers into 
generations

Generations to
scan

All of these require a fast memory copying function 10



Memory compactor

• Memory is potentially almost full and list of 
object pointers is not ordered

• Therefore use SDRAM for the working space of 
the compactor

11



Scanner (Identify garbage)

12

• Garbage collection rule is used 
to find ”dead” objects

• A trace contains two elements: 
time of spike and an actual 
trace in different parts of a 
buffer

• To remove a trace, shift 
elements up and move pointers

• An exhaustive search over all 
objects

• What is dead trace: I have used 
”older than 500ms”



Fast memory copying function – ARM 
block copy

* ARM block copy uses LDM instruction instead of LDR or LDRB
13



Real-time simulation constraint

Whole simulation time

1ms

Synapse processing (Spikes 
in queue are looked at)

Neuron processing 
(Membrane 

potential update)
Garbage collection

• Synapse processing and neuron processing run for 
~0.55 ms using stdp_example.py simulation.

• Garbage collection includes compactor and scanner.
14



Results: Compactor

• Type of simulation: neurons per core / post traces per 
buffer / initial size of buffer (STDP rule controlled)

• Time expressed in mili-seconds
• In the last row, compactor run-time is nearing 1ms

15



Reduce compactor run time

16



Results: Scanner

• Type of simulation: neurons per core / post traces per 
buffer / initial size of buffer (STDP rule controlled)

• Time expressed in nano-seconds

17



Reduce scanner run-time: 
Generational garbage collector

* Lieberman et al, A Real-Time Garbage Collector Based on the Lifetimes of Objects, 1983

• Main principle: Keep track of how old memory region is 
and how much it was garbage collected as demonstrated 
by Lieberman et al*.

• Old regions which were garbage collected a lot, are likely 
to hold more permanent objects so scan them less often

• For history traces, have two generations: old generation 
and new generation

• New generation is almost unlikely to have garbage, so do 
not scan it

• Old generation probably has garbage, scan it all

18



Results: Scanner with generations

• Type of simulation: neurons per core / post traces per 
buffer / initial size of buffer (STDP rule controlled)

• Time expressed in nano-seconds
• Much less memory to scan reduces run-time ~5 times

19



Results: Scanner

• Sometimes scanner does not find any garbage 
(Red trace often reaches 0 bytes)

• Collect less often to avoid wasted scan cycles 
(Lower illustration black curve is scanning every 4th 
timestep) 20



Results: Total memory usage for 
plasticity

21



Possible further work

• Garbage collector of general type objects for DTCM

• More sophisticated garbage collection rules from biological 
literature: When is history trace dead? 

• Can garbage collector help reduce memory significantly to fit 
more neurons per core in plastic networks?

22



Conclusion

• Garbage collection can help SpiNNaker avoid overflowing 
synaptic buffers and monitor real memory usage for plasticity 
history traces.

• Disadvantage is that it copies a lot of data around which is a 
slow process.

• Other known solutions: inject artificial ‘spike’ periodically that 
will clear plasticity history trace buffers.

23



24

Source code is available on garbage collection 
branches of sPyNNaker software package.

Acknowledgements:
• Project supervised by Dave Lester
• Jamie Knight allowed to use his run-time 

profiling tool
• Thanks to SpiNNaker software team for showing 

the ropes of the toolchain

Questions?


