MANCHESTER
1824

The University of Manchester

Real-Time Garbage Collection for history traces
in plasticity algorithms on SpiNNaker

Mantas Mikaitis

Garbage collection

« Automatic memory management

 Most commonly applied to RAM where programs
allocate many small memory blocks

« JAVA has a big set of garbage collectors
« C does not have a garbage collector by default

* On SpiNNaker, we do not have memory management of
any sort

« Therefore memory allocation and freeing is fully
controlled by a programmer

Garbage collection — simple example

The University of Manchester

A, B, C are memory objects. B is a dead object— no program
will use it anymore. Thus garbage collector does the following

in states 2 and 3:

A A A
B Free
c |l <]
' ' Free
Free | | Free

Originated in
1960s in
LISP
programming
language™

* McCarthy, Recursive functions of symbolic expressions and their computation by machine, part |, 1960

e Hard real-time systems

« Real-time garbage collection is important in hard real-
time systems

 For example, passenger jets
* In these systems mutator* must not be interrupted

« Additionally, collection must preserve correct memory
state when exiting early

« SpiNNaker is semi-hard real-time system

* Program that is reading and writing memory

ENEEEE Semi-hard real-time system

The University of Manchester

Whole simulation time

1ms |

OK

OK - Synapse processing Neuron processing
Synapse processing - Neuron processing

OK

NOT OK

Synapse processing

Neuron processing

Synapse processing _ Neuron processing

5

ey SpiNNaker Chip Tear-Down

The University of Manchester

| Core12

Tightly-coupled
E"”f
e

Qo)
Suf Core 8

Core 16

64KB Data
memory
32KB (DTCM)
Instruction
memory

re
= SDRAM
Control

Each ARM968 has a personal

Direct-Memory-Access Controller 18 ARM968 cores 6
and 128MB shared SDRAM

Spike-Timing-Dependant-
renesvovees Plasticity(STDP)

Synapse
weight
pre post
pre | 0. |
post l ‘ LS. ‘ F e

weight*

* Additive weigh dependence. Other rules exist.

Simulating plastic neural networks on

SpiNNker
§|§ Connections
Model Population 2
in PyNN
. ARM ARM
SplNNaker Population 1 —7)(&_ Population 2
L

|)
Y \

Plasticity of all connecting synapses is processed here

Simulating plastic neural networks on
L= SpiNNker

The University of Manchester

current time

(pre neuron spiked)
“_ last pre-synaptic \‘ |
spike
pre
64KB :
Data
32KB memory ’\
Instruction #
memor (DTCM) DOSt — \ post synaptic spike times
Y - — > i stored in DTCM (Up to ~16
post-synaptic window : per neuron)

Overflow of memory can happen in history trace buffers

Implementation details: Main
components

MANCHESTER
1824

The University of Manchester

Generational collector

Copying collector

\ Garbage
Scanner (ldentify) collection rule _
garbage)) i Generations to :
J i scan :
4)
Classify
Memory compactor buffers into
generations
.. \- /

All of these require a fast memory copying function 10

e Memory compactor
 Memory is potentially almost full and list of
object pointers is not ordered
* Therefore use SDRAM for the working space of
the compactor

DTCM of a single core Off-Chip SDRAM

Stack 1. Copy each
object to

B e AR
stack N
L —

/

bles

-

Application variables 2. DMA read back
to DTCM

Scanner (Identify garbage)

The University of Manchester

Garbage collection rule is used
to find "dead” objects

A trace contains two elements:
time of spike and an actual
trace in different parts of a
buffer

To remove a trace, shift
elements up and move pointers
An exhaustive search over all
objects

What is dead trace: | have used
"older than 500ms”

12

Fast memory copying function — ARM
LZEE block copy

The University of Manchester

1,000 ‘ ‘
—=— ARM block copy

200 ||~ sark_mem_cpy
—— DMA

600

400

200

Number of instructions run

\ |
0 200 400 600 800 1,000
Size of data block [bytes]

13
* ARM block copy uses LDM instruction instead of LDR or LDRB

WEREEEE Real-time simulation constraint

The University of Manchester

Whole simulation time

A
v

Tms
| | | | | | |

Neuron processing
(Membrane
potential update)

Synapse processing (Spikes
in queue are looked at)

* Synapse processing and neuron processing run for
~0.55 ms using stdp example.py simulation.
« Garbage collection includes compactor and scanner.

14

M s Results: Compactor

The University of Manchester

type of simulation = ARM Block Copy = memcpy DMA sark_mem_cpy
40/4/32b 0.039 +0.0013 0.044 +£0.0005 0.064 0.0 0.146 +£0.004
255/4/16b 0.4 +0.08 0.66 +0.08 091 £0.09 1.7 +0.1
255/4/32b 0.95 +£0.043 1.06 +0.13 1.07 £0.13 3.87 £0.09

« Type of simulation: neurons per core / post traces per
buffer / initial size of buffer (STDP rule controlled)

* Time expressed in mili-seconds

* In the last row, compactor run-time is nearing 1ms

15

sk s Reduce compactor run time

The University of Manchester

1
0.8 | |
E o6l |
O
£
Io04] |
)
2
0.2 .
O \ | - {AA
0 10 20 30

Compactor work space division factor

Results: Scanner

The University of Manchester

type of simulation time (ns)

40/16/64b 3870 =
40/16/128b 3913 3
255/4/16b 36578
255/4/32b 43171

-20
-28
+1410
+1645

* Type of simulation: neurons per core / post traces per
buffer / initial size of buffer (STDP rule controlled)

* Time expressed in hano-seconds

17

Reduce scanner run-time:
Generational garbage collector

« Main principle: Keep track of how old memory region is
and how much it was garbage collected as demonstrated
by Lieberman et al*.

« Old regions which were garbage collected a lot, are likely
to hold more permanent objects so scan them less often

* For history traces, have two generations: old generation
and new generation

 New generation is almost unlikely to have garbage, so do
not scan it

« Old generation probably has garbage, scan it all

* Lieberman et al, A Real-Time Garbage Collector Based on the Lifetimes of Objects, 1983

NSRBI Results: Scanner with generations

The University of Manchester

type of simulation time (ns)

40/16/64b 3086 148
40/16/128b 3049 £51
255/4/16b 6449 +£635
255/3/24b 8624 1640

« Type of simulation: neurons per core / post traces per
buffer / initial size of buffer (STDP rule controlled)
* Time expressed in nano-seconds

* Much less memory to scan reduces run-time ~5 times

19

LEROEESEY Results: Scanner

The University of Manchester

30
1kHz

0.5kHz —¢—

Space reclaimed (bytes)
O

800 850 900 950 1000

Space reclaimed (bytes)

0 | 1 W 1
800 850 900 950 1000

« Sometimes scanner does not find any garbage
(Red trace often reaches 0 bytes)

« Collect less often to avoid wasted scan cycles
(Lower illustration black curve is scanning every 4th
timestep)

20

wresrsmmy Results: Total memory usage for
2Bl plasticity

The University of Manchester

14000 T T I T

12000

No garbage collection

10000 I

8000

6000 |-

Space used (bytes)

:

2000 |-

With garbage collection

0 1000 2000 3000 4000 5000
Simulation time (ms)

Possible further work

« (Garbage collector of general type objects for DTCM

* More sophisticated garbage collection rules from biological
literature: When is history trace dead?

« Can garbage collector help reduce memory significantly to fit
more neurons per core in plastic networks?

22

WERRENREY Conclusion

« (Garbage collection can help SpiNNaker avoid overflowing
synaptic buffers and monitor real memory usage for plasticity
history traces.

« Disadvantage is that it copies a lot of data around which is a
slow process.

« QOther known solutions: inject artificial ‘spike’ periodically that
will clear plasticity history trace buffers.

23

MANCHESTER
1824

Source code is available on garbage collection
branches of sPyNNaker software package.

Acknowledgements:

* Project supervised by Dave Lester

« Jamie Knight allowed to use his run-time
profiling tool

« Thanks to SpiNNaker software team for showing
the ropes of the toolchain

Questions?

24

