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Garbage collection

• Automatic memory management
• Most commonly applied to RAM where programs 

allocate many small memory blocks
• JAVA has a big set of garbage collectors
• C does not have a garbage collector by default
• On SpiNNaker, we do not have memory management of 

any sort
• Therefore memory allocation and freeing is fully 

controlled by a programmer

2



Garbage collection – simple example

A, B, C are memory objects. B is a dead object– no program 
will use it anymore. Thus garbage collector does the following 
in states 2 and 3:

Originated in
1960s in

LISP
programming

language*
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Hard real-time systems

• Real-time garbage collection is important in hard real-
time systems

• For example, passenger jets
• In these systems mutator* must not be interrupted
• Additionally, collection must preserve correct memory 

state when exiting early
• SpiNNaker is semi-hard real-time system

* Program that is reading and writing memory
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Semi-hard real-time system

Whole simulation time

1ms

Synapse processing Neuron processing Some delay

Synapse processing Neuron processingSome delay

Synapse processing Neuron processingSome delay

Synapse processing Neuron processingSome delay
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OK
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SpiNNaker Chip Tear-Down

18 ARM968 cores
and 128MB shared SDRAM

32KB 
Instruction 

memory

64KB Data 
memory 
(DTCM)

ARM968

Each ARM968 has a personal
Direct-Memory-Access Controller 6



Spike-Timing-Dependant-
Plasticity(STDP)

pre

post

weight*

pre post

Synapse
weight

* Additive weigh dependence. Other rules exist.
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Simulating plastic neural networks on 
SpiNNker

Population 1 Population 2

Connections

ARM
Population 1

ARM
Population 2

Model
in PyNN

SpiNNaker

Plasticity of all connecting synapses is processed here
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Simulating plastic neural networks on 
SpiNNker

32KB 
Instruction 

memory

64KB 
Data 

memory 
(DTCM)

ARM968

Overflow of memory can happen in history trace buffers
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Implementation details: Main 
components

Scanner (Identify 
garbage)

Memory compactor

Garbage
collection rule

Copying collector

Generational collector

Classify 
buffers into 
generations

Generations to
scan

All of these require a fast memory copying function 10



Memory compactor

• Memory is potentially almost full and list of 
object pointers is not ordered

• Therefore use SDRAM for the working space of 
the compactor
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Scanner (Identify garbage)
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• Garbage collection rule is used 
to find ”dead” objects

• A trace contains two elements: 
time of spike and an actual 
trace in different parts of a 
buffer

• To remove a trace, shift 
elements up and move pointers

• An exhaustive search over all 
objects

• What is dead trace: I have used 
”older than 500ms”



Fast memory copying function – ARM 
block copy

* ARM block copy uses LDM instruction instead of LDR or LDRB
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Real-time simulation constraint

Whole simulation time

1ms

Synapse processing (Spikes 
in queue are looked at)

Neuron processing 
(Membrane 

potential update)
Garbage collection

• Synapse processing and neuron processing run for 
~0.55 ms using stdp_example.py simulation.

• Garbage collection includes compactor and scanner.
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Results: Compactor

• Type of simulation: neurons per core / post traces per 
buffer / initial size of buffer (STDP rule controlled)

• Time expressed in mili-seconds
• In the last row, compactor run-time is nearing 1ms
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Reduce compactor run time
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Results: Scanner

• Type of simulation: neurons per core / post traces per 
buffer / initial size of buffer (STDP rule controlled)

• Time expressed in nano-seconds
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Reduce scanner run-time: 
Generational garbage collector

* Lieberman et al, A Real-Time Garbage Collector Based on the Lifetimes of Objects, 1983

• Main principle: Keep track of how old memory region is 
and how much it was garbage collected as demonstrated 
by Lieberman et al*.

• Old regions which were garbage collected a lot, are likely 
to hold more permanent objects so scan them less often

• For history traces, have two generations: old generation 
and new generation

• New generation is almost unlikely to have garbage, so do 
not scan it

• Old generation probably has garbage, scan it all
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Results: Scanner with generations

• Type of simulation: neurons per core / post traces per 
buffer / initial size of buffer (STDP rule controlled)

• Time expressed in nano-seconds
• Much less memory to scan reduces run-time ~5 times
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Results: Scanner

• Sometimes scanner does not find any garbage 
(Red trace often reaches 0 bytes)

• Collect less often to avoid wasted scan cycles 
(Lower illustration black curve is scanning every 4th 
timestep) 20



Results: Total memory usage for 
plasticity
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Possible further work

• Garbage collector of general type objects for DTCM

• More sophisticated garbage collection rules from biological 
literature: When is history trace dead? 

• Can garbage collector help reduce memory significantly to fit 
more neurons per core in plastic networks?
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Conclusion

• Garbage collection can help SpiNNaker avoid overflowing 
synaptic buffers and monitor real memory usage for plasticity 
history traces.

• Disadvantage is that it copies a lot of data around which is a 
slow process.

• Other known solutions: inject artificial ‘spike’ periodically that 
will clear plasticity history trace buffers.
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Source code is available on garbage collection 
branches of sPyNNaker software package.
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