
Numerical accuracy of the Izhikevich neuron
model in fixed-point arithmetic
Mantas Mikaitis, PhD student @ University of Manchester, UK
mantas.mikaitis@manchester.ac.uk
With: Michael Hopkins, Dave Lester, Steve Furber.

SpiNNaker team meeting
Manchester, 31 July 2019

http://manchester.ac.uk

2/28

Izhikevich neuron model: Cortical
spiking patterns (Izhikevich 2003)

(RK2 Midpoint ODE solver,
Hopkins & Furber, 2015)

(On spike: 𝑉 = 𝑐,
𝑈 = 𝑈 + 𝑑)

3/28

Challenges with fixed-point: spike
timing lags on constant DC current

Hopkins & Furber, 2015 Trensch et al. 2018

Blue: fixed-point. Red: float.
Timestep 0.1ms. Dotted: double RKF45. Others: fixed-point Euler.

Timestep 1ms.

Spike number

La
g(

m
s)

4/28

Measurement of error

• There are two types of error: algorithmic (ODE solver) and
arithmetic (quantization, rounding, overflows).

• Choose a reference in such a way, that algorithmic error is
removed from the comparison.

• Evaluate spike lags – how far each spike time is from the
corresponding spike time in the reference system.

• This gives us a measurement to compare different arithmetics
on this problem.

5/28

Traces from Michael’s original test
replicated on SpiNNaker (19 spikes in

total, first and last 6 shown)

Arithmetic
errors in
spike lag

6/28

Spike lags from Michael’s original test
replicated on SpiNNaker (except

reference is double precision)

7/28

Correct rounding of constants
• Instead of writing the constant as 0.04k, round it to the nearest

accum explicitly: 0.040008544921875k (error of ~0.28𝝐).
• GCC rounds down by default, returning an error of 0.72𝝐

(vague specification in the fixed-point ISO standard).

8/28

Mixed-precision multiplications
• This time, use unsigned long fract type, e.g.

0.040000000037252902984619140625ulr.
• Requires multiplications to be done as mixed-format.
• Limited support in GCC and slow.

9/28

M
SB

LS
B

×

=

LS
B

M
SB

≫ (Round and saturate)
Use these bits
for rounding
rather than

throwing
away!

32bit accum

64bit answer

dec. point

Fixed-point multiplier

10/28

Given the output from multiplier:

answer somewhere in this gap
accum range

ignore

Round-down (RD)

11/28

Given the output from multiplier:

?

answer somewhere in this gap
accum range

0 1

Round-to-nearest (RN)

12/28

Rounding of multiplication results

• Use correct rounding of constants, mixed-format
multiplications and do rounding on multiplications.

13/28

Summary so far; running longer (1ms
timestep).

14/28

Summary so far; running longer
(0.1ms timestep).

15/28

Performance

NOTE: Custom multipliers are slightly more expensive because there is saturation check on
them (DRL stdfix-full-iso.h extension).
NOTE: Mixed-format versions can contain more load instructions for constants (>12 bit
immediates).

Table 1:

16/28

Stochastic rounding: a simple
example

• Round to nearest(RTN):

𝑅𝑁 0.25 + 𝑅𝑁 0.25 + 𝑅𝑁 0.25 + 𝑅𝑁 0.25 = 0

• Stochastic round(SR):

𝑆𝑅 0.25 + 𝑆𝑅 0.25 + 𝑆𝑅 0.25 + 𝑆𝑅 0.25 = 𝑙𝑖𝑘𝑒𝑙𝑦 0 𝑜𝑟 1

17/28

Given the output from multiplier:

answer somewhere in this gap
accum range

residue
If < residue round up,
else round down.

Use these bits as
probability of

rounding up, [0,1).

Stochastic rounding (SR)

18/28

SR algorithm

19/28

Harmonic series test: ∑!"#$ #
!
= 1 + #

%
+ #

&
…

NOTE: Calculate the addends as unsigned long fract and round before
adding to the accum sum.

Table 2:

20/28

Testing method of Izhikevich ODE
solutions

• Four ODE solvers: RK2 Midpoint, RK2 Trapezoid, RK3 Heun, Chan-Tsai
• Two different neuron types (regular and fast spiking - RS/FS)
• Five arithmetics: double (reference), float, fixed-point {round-down,
round-to-nearest, stochastic}

21/28

Results: 2nd order solvers

Spike number

Sp
ik

e
la

g/
le

ad
 c

om
pa

re
d

to
 d

ou
bl

e
re

f (
m

s)
.

22/28

Results: 3rd order solvers

Spike number

Sp
ik

e
la

g/
le

ad
 c

om
pa

re
d

to
 d

ou
bl

e
re

f (
m

s)
.

23/28

Comment on readability of code: it is not
necessarily only for bit level

programmers!

• Anyone can experiment with different fixed-point types easily
• The only modification needed is instead of using “ * “ use a

macro MULT(x, y) – this will call correct multiplications
depending on numerical types of x and y and perform rounding
specified in a different macro.

24/28

Example multiplication macro

25/28

Summary

• I have shown how to remove arithmetic error from the fixed-point Izhikevich neuron
model.

• Fixed-point arithmetic can perform as well as float in this case.
• Stochastic rounding with 32-bit fixed-point arithmetic is almost equivalent to

double.
• Both performance and accuracy of GCC fixed-point libraries is poor.

26/28

Thank you for listening! Questions?

27/28

Fixed-point type in GCC: accum <s, 16, 15>:

𝜖 = 2!"# ≈ 0.0000305176…
Range: [−2"# = −65536, 2"$ − 2!"# ≈ 65535.99996948…]

.
𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

(Optional) Fixed-point
representation: accum type

32 𝑏𝑖𝑡𝑠

sign

2% 2!"2" 2!&

28/28

(Optional) Comparison of SR
resolutions

Given the output from multiplier:

Use SOME of these
bits as probability

of rounding up,
[0,1).

