MANCHESTER
1824

The University of Manchester

Numerical accuracy of the Izhikevich neuron
model in fixed-point arithmetic

Mantas Mikaitis, PhD student @ University of Manchester, UK
mantas.mikaitis@manchester.ac.uk

With: Michael Hopkins, Dave Lester, Steve Furber.

SpiNNaker team meeting
Manchester, 31 July 2019

SpiNNaker2
[Universal spiking Neural Network Architecture

http://manchester.ac.uk

lzhikevich neuron model: Cortical
spiking patterns (Izhikevich 2003)

Rat's motor cortex Model
RS (regular spiking)

\

//uuub WA

B (intrinsically bursting)

T

S (fast spiking)

o

L

%X:OOMﬂ+5V+UM—u+K0,
JU (On spike: V = ¢,
Eza(bV—U), U=U+d)

(RK2 Midpoint ODE solver,
Hopkins & Furber, 2015)

~_~

9 : 14O+If+h - U{
o =6+ (5+0.04V,)V,

“ty
n= 5TV
B o h(be - Uf)
B 2
V(t+h)=V,+h(0—B+(5+0.04n)n),
U(t+h)=U +ah(—U —B+bn).
2/28

Challenges with fixed-point: spike
timing lags on constant DC current

Hopkins & Furber, 2015 v() Trensch et al. 2018

Lag(ms)

sos00ns
e TEe e T e -

— -

T E g la) 11
Spike number

. . > t [ms]
Blue: fixed-point. Red: float. 0 50 100 150 200 250

Timestep 0.1ms. Dotted: double RKF45. Others: fixed-point Euler.
Timestep 1ms.

3/28

Measurement of error

There are two types of error: algorithmic (ODE solver) and
arithmetic (quantization, rounding, overflows).

Choose a reference in such a way, that algorithmic error is
removed from the comparison.

Evaluate spike lags — how far each spike time is from the
corresponding spike time in the reference system.

This gives us a measurement to compare different arithmetics
on this problem.

4/28

Traces from Michael’s original test

replicated on SpiNNaker (19 spikes in
total, first and last 6 shown)

Membrane potential (mV)

Membrane potential (mV)

| I | |
~l D W -
S o o O
|

|
o0
)

—fi

double, 7 = 0.1ms
xed-point, 7 = 0.1 ms
double, h = 1 ms

----- fixed-point, h = lms '

S

!

0

——SEmemww

D

1,400

1,500 1,600

1,700
Time (ms)

1,800

1,900

2,000

(@

G

Arithmetic
errors in
spike lag

5/28

Spike lags from Michael’s original test
replicated on SpiNNaker (except
reference is double precision)

—&—fixed-point, 7 = 0.1 ms

—e— fixed-point, 7 = I ms

—— float, h = 0.1 ms

|—e— float, h= 1ms .

60

I
)

(]
-

Spike lag (ms)

Spike number

6/28

* Instead of writing the constant as 0.04k, round it to the nearest
accum explicitly: 0.040008544921875k (error of ~0.28¢€).
* GCCrounds down by default, returning an error of 0.72¢

Correct rounding of constants

(vague specification in the fixed-point ISO standard).

60

40

20

Spike lag (ms)

—e—fixed-point, 7 = 0.1 ms
—eo— fixed-point, 7 = 1 ms
—— float, h =0.1ms
o float, 7 = 1 ms

2> O
& X &

Spike number

Spike lag (ms)

40

20

A

—e—fixed-point, 7 = 0.1 ms
—eo— fixed-point, 7 = 1 ms

float, h = 0.1 ms
float, h = 1 ms

Spike number

7/28

60

Spike lag (ms)

20

Mixed-precision multiplications

This time, use unsigned long fract type, e.g.
0.040000000037252902984619140625ulr.

Requires multiplications to be done as mixed-format.
Limited support in GCC and slow.

40 +

—8—fixed-point, 7 = 0.1 ms

—eo— fixed-point, 7 = 1 ms 4 -
—— float, h =0.1ms

float, 7 = 1 ms |

—O—

Spike lag (ms)

o oO—0—0
2> O
& X &

0 5 10 15 20 ‘

Spike number Spike number

8/28

Fixed-point multiplier

MSB

LSB

32bit accum

64bit answer

MSB

x _
—

=)

s Use these bits
dec. point > (Round and saturate) for rounding

rather than
throwing

& away!

LSB

9/28

Round-down (RD)

Given the output from multiplier:

f Y
ignore

¢ ® >
‘ v ' accum range

answer somewhere in this gap

10/28

Round-to-nearest (RN)

Given the output from multiplier:

»
»

‘ : : accum range
answer somewhere in this gap

11/28

Spike lag (ms)

Rounding of multiplication results

* Use correct rounding of constants, mixed-format
multiplications and do rounding on multiplications.

60 T 1 67 N

—8—fixed-point, 7 = 0.1 ms
—eo— fixed-point, 7 = 1 ms 4

—— float, h =0.1ms

01 o float, 7 = 1 ms . é o |
50
S
2 o
=
n
2L i
4| i
| |
0 5 10 15 20

Spik b i
pike number Spike number

12/28

Spike lag (ms)

Summary so far; running longer (1ms
timestep).

—a— float

—o— fixed-point, default

—e— fixed-point, correct constants
—e— fixed-point, mixed-precision
—— fixed-point, multiplier rounding

Spike number

13/28

Spike lag (ms)

Summary so far; running longer
(0.1ms timestep).

—A— float

—o— fixed-point, default

—— fixed-point, correct constants
—=— fixed-point, mixed-precision
—— fixed-point, multiplier rounding

Spike number

14/28

Performance

Arithmetic Speed of ODE (us)
software double 9.99203
software float 6.68132
fixed-point: default RK2 Midpoint, GCC 0.90881
fixed-point: mixed-precision multipliers, GCC 10.62621
fixed-point: default RK2 Midpoint, custom multipliers 1.86757
fixed-point: mixed-precision, custom multipliers 1.19345
fixed-point: mixed-precision, custom multipliers with RTN 1.59792

Table 1: Speed of RK2 Midpoint ODE solver integration step for different arith-

metics, compiled with the -Ofast GCC compiler optimization flag.

NOTE: Custom multipliers are slightly more expensive because there is saturation check on

them (DRL stdfix-full-iso.h extension).

NOTE: Mixed-format versions can contain more load instructions for constants (>12 bit

immediates).

15/28

Stochastic rounding: a simple
example

e Round to nearest(RTN):
RN(0.25) + RN(0.25) + RN(0.25) + RN(0.25) =0
e Stochastic round(SR):

SR(0.25) + SR(0.25) + SR(0.25) + SR(0.25) = likely 0 or 1

16/28

Stochastic rounding (SR)

))
Use these bits as
probability of

Given the output from multiplier: - rounding up, [0,1).

<
|
J

Y
residue
m o
If @< residue round up,]

/[else round down.

o >
' ' accum range

-9

answer somewhere in this gap

17/28

SR algorithm

Algorithm 2 Stochastic rounding by addition
function SATSR_INT64_INT32(X,n)
P < PRNG32()
P+ P&((1 <<n)—1)
X~ (X+P)>>n
if X > MAX_INT32 then
return MAX_INT32
if X <MIN_INT32 then
return MIN_INT32
return X

18/28

. 1 11
Harmonic series test: Z;ﬁl? =1+-+7..

NOTE: Calculate the addends as unsigned long fract and round before
adding to the accum sum.

Arithmetic || Sum ati=5x 10° | Errorati =35 x 10° | Iterations to converge

FP64 16.002 0 2.81...x 10™
FP32 15.404 0.598 2097152
FP16 7.086 8.916 513
s16.15 RN 11.938 4.064 65537
s16.15 RD 10.553 5.449 32769
s8.7 RN 6.414 9.588 257
s8.7RD 5.039063 10.963 129

s16.15 SR Mean = 16.002
(50 runs) std.dev =0.012
$8.7 SR Mean = 11.205
(50 runs) std.dev =0.242

—0.000135765 -

4.797 -

Table 2: Iterations until convergence of the harmonic series for different arithmetics.
Sums and errors relative to FP64 (double precision floating-point) reported at 5 mil-
lionth iteration. Floating-point data from Higham and Pranesh [62]. Averaged sums

from running the experiment 50 times in s16.15 and s8.7 SR arithmetics are also pro-
vided.

19/28

Testing method of Izhikevich ODE
solutions

* Four ODE solvers: RK2 Midpoint, RK2 Trapezoid, RK3 Heun, Chan-Tsai
* Two different neuron types (regular and fast spiking - RS/FS)

* Five arithmetics: double (reference), float, fixed-point {round-down,
round-to-nearest, stochastic}

20/28

Spike lag/lead compared to double ref (ms).

[\
o

—
)

|
—
@)

|
%)
S

[\
o

—
o

|
—
@]

|
)
S

Results: 29 order solvers

RK2 Midpoint, RS neuron

I I

-
.......... Nt =

Z ., Creareett oy crernnasnsntt]
‘“‘”T,VW"""\'&"_ 2 oA DAL RSPV PPELALLL Dl A

T4

20

10

-
- -

| |
200 400

RK2 Trapezoid, RS neuron

S hrr oy R B r PR]

ﬁ_t”nm’.nf,pa‘-_ _:.ﬁ‘.m.:y'_--.ﬁm*‘“m‘_

i
b4

o

| |
200 400

|
600

0 |
0 200

RK2 Midpoint, FS neuron

| |
0 200 400 600

RK2 Trapezoid, FS neuron

Spike number

— flp; — fxp, RD; =ee fxp, RTN; ---- fxp, SR;

21/28

Spike lag/lead compared to double ref (ms).

Results: 3™ order solvers

RK3 Heun, RS neuron

[\
=)

.......

e’

10 =

|
e
o

\

\

|
)
S

\ \ \
0 200 400 600

Chan-Tsai, RS neuron

RK3 Heun, FS neuron

\ \
0 200 400 600

Chan-Tsai, FS neuron

- R T
AR PR L L - “
vy
0 e TV TANEERL AL DU S b ARG Lt SR e e
et Gt b, o,

T

| \ |
0 200 400 600

ke number

0
—10
—20
L™ \ \
0 200 400 600
Spi
— flp; — fxp, RD;

.......... fxp, RTN,' —_———— pr, SR,

22/28

Comment on readability of code: it is not
necessarily only for bit level
programmers!

* Anyone can experiment with different fixed-point types easily

* The only modification needed is instead of using “ * “ use a
macro MULT(x, y) — this will call correct multiplications
depending on numerical types of x and y and perform rounding
specified in a different macro.

23/28

Example multiplication macro

#define MULT_ROUND_NEAREST_ACCUM(x,y)
({
__typeof__(x) temp@
__typeof__(y) templ
REAL result;
if (__builtin_types_compatible_p(__typeof__(x), s1615) &&
__builtin_types_compatible_p(__typeof__(y), s1615)) {
result = (kbits(__stdfix_smul_k_round_nearest(bitsk(temp@),
bitsk(templ))));
} else if ((__builtin_types_compatible_p(__typeof__(x), s1615) &&
__builtin_types_compatible_p(__typeof__(y), s@31))) {
result = (accum_times_long_fract_nearest(temp@d, templ));
} else if (__builtin_types_compatible_p(__typeof__(x), s031) &&
__builtin_types_compatible_p(__typeof__(y), s1615)) {
result = (accum_times_long_fract_nearest(templ, temp@));
} else if ((__builtin_types_compatible_p(__typeof__(x), s1615) &&
_ _builtin_types_compatible_p(__typeof__(y), u@32))) <
result = (accum_times_u_long_fract_nearest(temp®d, templ));
} else if (__builtin_types_compatible_p(__typeof__(x), u@32) &&
__builtin_types_compatible_p(__typeof__(y), s1615)) {
result = (accum_times_u_long_fract_nearest(templ, temp®));
} else {
}
result;

})

(x);
(y);

P i i i i i i i i i i S i i

24/28

summary

| have shown how to remove arithmetic error from the fixed-point Izhikevich neuron
model.

Fixed-point arithmetic can perform as well as float in this case.

Stochastic rounding with 32-bit fixed-point arithmetic is almost equivalent to
double.

Both performance and accuracy of GCC fixed-point libraries is poor.

25/28

Thank you for listening! Questions?

26/28

(Optional) Fixed-point
representation: accum type

21 20 271272
NN

[
T | . J Y

sign integer fraction

|
32 bits

Fixed-point type in GCC: accum <s, 16, 15>:

e = 2715 ~ 0.0000305176 ...
Range: [-215 = —65536,216 — 2715 ~ 65535.99996948 ...]

27/28

(Optional) Comparison of SR
resolutions

Given the output from multiplier:

@)
Use SOME of these _ T
. - £ 0 =

bits as probability T e = e]

of rounding up, é“ —«— RK2 Midpoint, RS

= —&— RK2 Midpoint, FS

[OI 1) . 8 _50 —6— RK2 Trapezoid, RS | |

(1 y £ ~ RK2 Trapezoid, FS
S ---- RK3 Heun, RS
= —e— RK3 Heun, FS
iv —~— Chan-Tsai, RS
ED —100 —+— Chan-Tsai, FS

1 2 3 4 5 6 7 8 9 10 11 12 13

Bits in the random number and residual used in stochastic rounding multipliers

28/28

