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Izhikevich neuron model: Cortical 
spiking patterns (Izhikevich 2003)

(RK2 Midpoint ODE solver,
Hopkins & Furber, 2015)

(On spike: 𝑉 = 𝑐,
𝑈 = 𝑈 + 𝑑)
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Challenges with fixed-point: spike 
timing lags on constant DC current

Hopkins & Furber, 2015 Trensch et al. 2018

Blue: fixed-point. Red: float.
Timestep 0.1ms. Dotted: double RKF45. Others: fixed-point Euler.

Timestep 1ms.
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Measurement of error

• There are two types of error: algorithmic (ODE solver) and 
arithmetic (quantization, rounding, overflows).

• Choose a reference in such a way, that algorithmic error is 
removed from the comparison.

• Evaluate spike lags – how far each spike time is from the 
corresponding spike time in the reference system.

• This gives us a measurement to compare different arithmetics
on this problem.
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Traces from Michael’s original test 
replicated on SpiNNaker (19 spikes in 

total, first and last 6 shown)

Arithmetic 
errors in 
spike lag
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Spike lags from Michael’s original test 
replicated on SpiNNaker (except 

reference is double precision)
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Correct rounding of constants
• Instead of writing the constant as 0.04k, round it to the nearest 

accum explicitly: 0.040008544921875k (error of ~0.28𝝐).
• GCC rounds down by default, returning an error of 0.72𝝐

(vague specification in the fixed-point ISO standard).
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Mixed-precision multiplications
• This time, use unsigned long fract type, e.g. 

0.040000000037252902984619140625ulr.
• Requires multiplications to be done as mixed-format.
• Limited support in GCC and slow.
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Use these bits 
for rounding 
rather than 

throwing 
away!

32bit accum

64bit answer

dec. point

Fixed-point multiplier
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Given the output from multiplier:

answer somewhere in this gap
accum range

ignore

Round-down (RD)
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Given the output from multiplier:

?

answer somewhere in this gap
accum range

0 1

Round-to-nearest (RN)
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Rounding of multiplication results

• Use correct rounding of constants, mixed-format 
multiplications and do rounding on multiplications.
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Summary so far; running longer (1ms 
timestep).
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Summary so far; running longer 
(0.1ms timestep).
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Performance

NOTE: Custom multipliers are slightly more expensive because there is saturation check on 
them (DRL stdfix-full-iso.h extension).
NOTE: Mixed-format versions can contain more load instructions for constants (>12 bit 
immediates).

Table 1:
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Stochastic rounding: a simple 
example

• Round to nearest(RTN):

𝑅𝑁 0.25 + 𝑅𝑁 0.25 + 𝑅𝑁 0.25 + 𝑅𝑁 0.25 = 0

• Stochastic round(SR):

𝑆𝑅 0.25 + 𝑆𝑅 0.25 + 𝑆𝑅 0.25 + 𝑆𝑅 0.25 = 𝑙𝑖𝑘𝑒𝑙𝑦 0 𝑜𝑟 1
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Given the output from multiplier:

answer somewhere in this gap
accum range

residue
If       < residue round up,
else round down.

Use these bits as 
probability of 

rounding up, [0,1).

Stochastic rounding (SR)
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SR algorithm
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Harmonic series test: ∑!"#$ #
!
= 1 + #

%
+ #

&
…

NOTE: Calculate the addends as unsigned long fract and round before 
adding to the accum sum.

Table 2:
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Testing method of Izhikevich ODE 
solutions

• Four ODE solvers: RK2 Midpoint, RK2 Trapezoid, RK3 Heun, Chan-Tsai
• Two different neuron types (regular and fast spiking - RS/FS)
• Five arithmetics: double (reference), float, fixed-point {round-down,
round-to-nearest, stochastic}
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Results: 2nd order solvers

Spike number

Sp
ik

e 
la

g/
le

ad
 c

om
pa

re
d 

to
 d

ou
bl

e 
re

f (
m

s)
.



22/28

Results: 3rd order solvers
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Comment on readability of code: it is not 
necessarily only for bit level 

programmers!

• Anyone can experiment with different fixed-point types easily
• The only modification needed is instead of using “ * “ use a 

macro MULT(x, y) – this will call correct multiplications 
depending on numerical types of x and y and perform rounding 
specified in a different macro.
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Example multiplication macro
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Summary

• I have shown how to remove arithmetic error from the fixed-point Izhikevich neuron 
model.

• Fixed-point arithmetic can perform as well as float in this case.
• Stochastic rounding with 32-bit fixed-point arithmetic is almost equivalent to 

double.
• Both performance and accuracy of GCC fixed-point libraries is poor.
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Thank you for listening! Questions?
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Fixed-point type in GCC: accum <s, 16, 15>:

𝜖 = 2!"# ≈ 0.0000305176…
Range: [−2"# = −65536, 2"$ − 2!"# ≈ 65535.99996948… ]

.
𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

(Optional) Fixed-point 
representation: accum type

32 𝑏𝑖𝑡𝑠

sign

2% 2!"2" 2!&
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(Optional) Comparison of SR 
resolutions

Given the output from multiplier:

Use SOME of these 
bits as probability 

of rounding up, 
[0,1).


