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Motivation for floating-point 
arithmetic

• SpiNNaker2 computing node ARM M4F has an FPU containing: ABS, ADD, SUB, 
CVT, DIV, MUL, MLA, MLS, FMA, SQRT.

• Larger range of representable values – avoid under/overflow in complex neuron 
model equations (AdExp, Hodgkin-Huxley).

• Very accurate nearer to 0.0 – the gap between two neighbouring values is 
getting smaller and smaller as it is relative to the exponent.



Single precision floating-point format

𝑒 𝑠

• e – biased exponent bits
• 𝑠 - significand
• Implicit 1 at MSB of the significant

• 𝜖 = 2!"#(Machine epsilon)
• Smallest positive value is 2!$"% ≈ 1.17×10!#&.
• Largest value is 2 − 2!"# ×2$"' ≈ 3.4×10#&.

𝑤

s

• Decimal value is decoded as: (−1)(×2)!$"'× 1 + 𝑠×2!"#
• Definition of ulp(x) [Kahan, Muller05]: Given some value x of infinite precision, ulp is a gap
between the two neighbouring floating-point numbers, even if x is one of them.
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Accuracy requirements in the 
standards

• IEEE 754-2008 floating-point standard specifies that all functions should return a 
correctly rounded result: “every operation shall be performed as if it first 
produced an intermediate result correct to infinite precision and with unbounded 
range, and then rounded that result”

• This means that the result is rounded to nearest and is within 0.5ulp from the 
mathematically exact result.

• Another useful standard is OpenCL parallel programming standard. It specifies 
that both exp and log functions should have accuracy ≤ 3𝑢𝑙𝑝𝑠 in desktop 
profile, ≤ 8192𝑢𝑙𝑝𝑠 for half_exp() and half_log() and ≤ 4𝑢𝑙𝑝𝑠 in embedded 
profile. Flush subnormals to 0.

Standard exp() log()

IEEE 754-2008 0.5ulp 0.5ulp

OpenCL 3 (desktop)
4 (embedded)
8192 (half) ulps.

3 (desktop)
4 (embedded)
8192 (half) ulps.



Accelerator proposed for SpiNNaker2
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• Two versions: optimized for 
performance and optimized for 
leakage.

• Internal representation is fixed-
point s3.35 – early choice for 
maximizing s16.15 accuracy.

• Range reduction/reconstruction 
stages 1-2 clock cycles.

• 2 cycles for bus operation.
• For full accuracy, version on the 

left requires 13 cycles and the 
version on the right 21 cycles.

• 13à21 cycles reduces leakage 
50% and area 26%.



Range reduction: exp()

Function: exp 𝑥 ∈ 0,𝑀𝐴𝑋*+,-. 𝑤𝑖𝑡ℎ 𝑥 ∈ ~ − 88(−104 𝑓𝑜𝑟 𝑑𝑒𝑛𝑜𝑟𝑚𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡), ~88 .

Algorithm 1:

1. Convert x to fixed-point.

2. Find 𝑛 such that 𝑥/ = 𝑥 − 𝑛×𝑙𝑜𝑔(2) and 𝑥/ ∈ [−1.242, 0.869] (Take 𝑛 = 𝑥 Q #%0
"1%

).

3. Calculate exp 𝑥/ ∈ [0.29, 2.38].
4. (Range reconstruction) exp 𝑥 = exp 𝑥/ + 𝑛× log 2 = exp 𝑥/ ×22.

In step 4, we first normalize exp 𝑥/ (using CLZ), cut off the MSB and treat that as a 
significand. We also add n+CLZ to get the exponent of the floating point representation.

NOTE: We never have to keep very large numbers like 𝑀𝐴𝑋*+,-. in fixed-point.



Range reduction: log()

Function: log 𝑥 ∈ ~ − 88 −104 𝑓𝑜𝑟 𝑑𝑒𝑛𝑜𝑟𝑚𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 , 88 𝑤𝑖𝑡ℎ 𝑥 ∈ (0,𝑀𝐴𝑋*+,-.].

Algorithm 2:

1. Find 𝑛 such that 𝑥/ = 3
"!

and 𝑥/ ∈ [1,2] (If x is normalized, 𝑥/ = 1. 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑).

2. Calculate log 𝑥/ ∈ [0, ~0.69].
3. (Range reconstruction) log 𝑥 = log 𝑥/ Q 22 = log 𝑥/ + 𝑛 Q log(2).
4. Normalize the output and construct the exponent to convert to floating-point.

NOTE: When x is very close to 1, e.g. 𝑥 = 1 − 𝜖, the logarithm will be computed as 
log 2 − 2𝜖 − log(2), resulting in catastrophic cancellation issue.

Solution: Before step 2, if the significand (1. 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑) is close to 2, divide it by 2 and 
add 1 to the exponent. This way we make the significand, 𝑥/ ∈ [0.75, 1.5].



Natural logarithm function accuracy



Related work on accelerators in 
single-precision float

Work Speed 
(MHz)

exp() 
latency (ns, 
cc)

log() 
latency(ns, 
cc)

Accuracy Pipelined Platform

Detrey et al. 
2005 100 - 61, 7 1ulp Y FPGA

Detrey et al. 
2007 100 123, 13 88, 9 1ulp N FPGA

Dinechin et al. 
2010 ~213 76, 16 - 1ulp Y FPGA

Langhammer&
Pasca, 2017 ~480 65, 31 52, 25 3ulp Y FPGA

This work 
(performance)

250
52, 13 1ulp(exc.

log for 
x≈1)

N 22nm
This work 
(leakage) 84, 21



Summary

• Accuracy and energy results of the floating-point accelerator are presented.

• Two options are available: optimized for performance or optimized for leakage.

• Next steps would be to integrate the analysis into the whole SpiNNaker2 chip 
energy outlook and see which version of the accelerator is better – is it actually 
worth reducing the speed of functions for some leakage reduction?

• Is floating-point needed and worth paying for with leakage/area in general?

Questions?



(extra slide)Iteration unit architecture


