MANCHESTER
1824

The University of Manchester

Energy-accuracy trade-offs in floating-
point arithmetic architectures

Mantas Mikaitis
SpiNNaker team meeting, 18t December 2018

Contents

Motivation for floating-point format
On accuracy of floating-point numbers
Accuracy requirements in the standards

Results

Motivation for floating-point
arithmetic

e SpiNNaker2 computing node ARM MA4F has an FPU containing: ABS, ADD, SUB,
CVT, DIV, MUL, MLA, MLS, FMA, SQRT.

 Larger range of representable values — avoid under/overflow in complex neuron
model equations (AdExp, Hodgkin-Huxley).

* Very accurate nearer to 0.0 — the gap between two neighbouring values is
getting smaller and smaller as it is relative to the exponent.

Single precision floating-point format

A
|

\ J
!

e S
« e —biased exponent bits « € = 2723(Machine epsilon)
e s - significand « Smallest positive value is 27126 ~ 1.17x10738,
« Implicit 1 at MSB of the significant ¢ Largest valueis (2 — 2723)x21%7 ~ 3.4x1038,

 Decimal value is decoded as: (—1)5%2¢7127x (1 + sx2723)
» Definition of ulp(x) [Kahan, Muller05]: Given some value x of infinite precision, ulp is a gap

between the two neighbouring floating-point numbers, even if x is one of them.

v

Fixed-point |

FIoating-point I —t—+— IOI 1 | | | I

Accuracy reguirements in the
standards

* |EEE 754-2008 floating-point standard specifies that all functions should return a
correctly rounded result: “every operation shall be performed as if it first
produced an intermediate result correct to infinite precision and with unbounded
range, and then rounded that result”

* This means that the result is rounded to nearest and is within 0.5ulp from the
mathematically exact result.

* Another useful standard is OpenCL parallel programming standard. It specifies
that both exp and log functions should have accuracy < 3ulps in desktop
profile, < 8192ulps for half_exp() and half_log() and < 4ulps in embedded
profile. Flush subnormals to 0.

4 (embedded)
8192 (half) ulps.

Standard exp() log()
|EEE 754-2008 0.5ulp 0.5ulp
OpenCL 3 (desktop) 3 (desktop)

4 (embedded)
8192 (half) ulps.

Accelerator proposed for SpiNNaker?2

x(FP32, s16.15, s031)

. 4

¥

Range reduction

Range reduction

Calculate
1-bit

Calculate
1-bit

Calculate
1-bit

Range
reconstruction

Range
reconstruction

N g

N g

exp/log(x)(FP32, s16.15, s031)

Two versions: optimized for
performance and optimized for
leakage.

Internal representation is fixed-
point s3.35 — early choice for
maximizing s16.15 accuracy.
Range reduction/reconstruction
stages 1-2 clock cycles.

2 cycles for bus operation.

For full accuracy, version on the
left requires 13 cycles and the
version on the right 21 cycles.
13->21 cycles reduces leakage
50% and area 26%.

Range reduction: exp()

Function: exp(x) € (0, MAXgp;par] With x € [~ — 88(—104 for denormal output), ~88].

Algorithm 1:
1. Convert x to fixed-point.
2. Findnsuchthatx’ = x —nXxlog(2) and x’ € [—1.242,0.869] (Take n = lx - %l).

3. Calculate exp(x') € [0.29, 2.38].
4. (Range reconstruction) exp(x) = exp(x’' + nxlog(2)) = exp(x") x2™.

In step 4, we first normalize exp(x')(using CLZ), cut off the MSB and treat that as a
significand. We also add n+CLZ to get the exponent of the floating point representation.

NOTE: We never have to keep very large numbers like MAXg; 047 in fixed-point.

Range reduction: log()

Function:log(x) € (~ — 88(—104 for denormal input), 88] with x € (0, MAXp10ar]-

Algorithm 2:

1. Find n such that x’ = zin and x' € [1,2] (If xis normalized, x' = 1.significand).
2. Calculate log(x") € [0, ~0.69].

3. (Range reconstruction) log(x) = log(x’ - 2™) = log(x") + n - log(2).

4. Normalize the output and construct the exponent to convert to floating-point.

NOTE: When x is very closeto 1, e.g. x = 1 — ¢, the logarithm will be computed as
log(2 — 2¢€) — log(2), resulting in catastrophic cancellation issue.

Solution: Before step 2, if the significand (1. significand) is close to 2, divide it by 2 and
add 1 to the exponent. This way we make the significand, x" € [0.75, 1.5].

Error in ulps

Relative error

Absolute error

Natural logarithm function accuracy

250
200
150 -
100 -
50 -

A .

| -1 il

0 b=
0.99

2x10™
1.5x107
1x107°
5x107®

0
5x10°
1x107
1.5x10™

0.994 0.996 0.998 1 1.002 1.004

1.006

X argument
_I | | | | | | | | |
0.99 0.992 0.994 0.996 0.998 1 1.002 1.004 1.006
X argument

1x10°
5x10710
0

5x10710

-1x107®

0.

99 0.996 0.998 1 1.002 1.004

X argument

0.992 0.994

1.006

Related wor

K on accelerators in

single-precision float
Work Speed | exp() log() Accuracy | Pipelined | Platform
(MHz) | latency (ns, | latency(ns,
cc) cc)

Detrey et al.
2005 100 - 61,7 1ulp Y FPGA
Detrey et al.
2007 100 123,13 88, 9 lulp N FPGA
Dinechin et al.
2010 213 76, 16 - lulp Y FPGA
Langhammeré& | _
Pasca, 2017 480 65, 31 52,25 Bulp Y FPGA
This work
(performance) >2, 13 lulp(exc
iy p 250 log for N 22nm

is wor.

x=1

(leakage) 84,21)

summary

Accuracy and energy results of the floating-point accelerator are presented.
Two options are available: optimized for performance or optimized for leakage.

Next steps would be to integrate the analysis into the whole SpiNNaker2 chip
energy outlook and see which version of the accelerator is better — is it actually
worth reducing the speed of functions for some leakage reduction?

s floating-point needed and worth paying for with leakage/area in general?

Questions?

(extra slide)lteration unit architecture

CPA

..

L]

y [36:33] L \
Ly v

dn LUT [3:2] [3:2]

