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SpiNNaker-2 chip pathway

• Prototype chip 1 (codename Santos) was already tested in 
2016/2017.
• Prototype chip 2 (codename JIB1) will be produced Q1 2018
• Prototype chip 3 will be produced Q1 2019
• Final SpiNNaker-2 chip will be produced Q2 2020

Currently in the process of fixing bugs with our Dresden 
colleagues to finalize JIB1 testchip!
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Feature comparison

SpiNNaker-1
• 18 ARM968 cores

• 96K memory per core

• 128MB Off-chip memory
• 1W power

SpiNNaker-2
• 144 ARM M4F  cores

• 128K memory per core (With 
capability to use other core’s 
memories)

• ~2GB Off-chip memory
• Single precision floating point 

operations

• Random Number Generators
• Machine Learning Accelerator

• Elementary Functions
• 1W power



5/18

Hardware elementary functions in 
various systems
• 1972: HP-35 Scientific pocket calculator contains exp and log with 

various bases.3

• 1980: Intel 8087 Math Coprocessor contains floating-point 2x and log2.3

• 2010: NVIDIA Fermi/Kepler SFUs contain double precision exp and log 
with various bases (30-80 cycles).1,2

• 2012: Intel Xeon Phi Coprocessors contain single-precision 2x (8 cycles) 
and log2 (4 cycles) functions.

• 2016: SpiNNaker-2 prototype chip Santos contains 15 fractional bits 
fixed-point exponential (6 cycles).4

1 Demystifying GPU Microarchitecture through Microbenchmarking, Wong et al, 2010; 3 wikipedia.com
2 A High-Performance Area-Efficient Multifunction Interpolator,  NVIDIA, Oberman et al, 2005; 4Partzsch et al, 2017

3

4

3
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Neuromorphic chips bring back 
hardware elementary functions
Neuromorphic systems are one of the best candidates to simulate a model 
capable of general AI.

This means super large scale neural networks with millions of events in 
real-time, using economically feasible amount of power.

Most importantly, it means biologically learning networks, with synaptic 
and neuronal plasticity, as well as structural dynamics.

Scales of 10^5 inputs per neuron, which can be multicompartment and 
with dynamic intrinsic properties.

We can realize this by helping neuromorphic software designers and 
modellers which comes down to optimising hardware.

Accelerate most common functions at the lowest level of transistors.
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Usage of exponential function

Neuron models 1 Biophysics of
postsynaptic ion channels 1

Learning:
STDP 1

1 Neuronal Dynamics, Gerstner et al. 2014
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Exponential in SpiNNaker-1

Two main options available:
1. Pre-calculated look-up-tables
2. Software library – ~100 cycles.

Issues:
1. Limited number and size of time constants; Cannot be 

changed in run-time.
2. Too slow for the current ~31 cycle(1) update of a single pair 

of spikes in STDP processing.

1 Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture, Knight et al, 2016
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Proposed exp/log unit for JIB1

• Exponential and natural logarithm
• I/O: S16.15, S0.31 (Can mix input and output format)
• Precision control
• 3-10 cycle exp
• 3-6 cycle logarithm

Experiment with approximate computing techniques - speed 
up learning rules with some loss in accuracy and compare 
how well it works.1

1 Is a 4-Bit Synaptic Weight Resolution Enough? – Constraints on Enabling Spike-Timing Dependent Plasticity
in Neuromorphic Hardware, Pfeil et al, 2012



10/18

Iterative algorithm for exp/log1

1 Elementary Functions – Algorithms and Implementation 3rd ed., Muller, 2016 

Small LUT

Shift + add

Convergence to 32-bit
accuracy in ~32 iterations

Iterative part can be done without ripple carry.
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Hardware design process

Hardware design process simplified
1. Specification/algorithms/models
2. Register-Transfer-Level design (Verilog)
3. Simulation and comparison of results (Using EDA* tools)
4. Synthesis

1. Map RTL to physical gate libraries
2. Check area/leakage/timing of the design

5. …
6. Manufacture

* Electronic Design Automation
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Register-Transfer-Level design

AHB – Advanced High-performance Bus
(Interface between processor and slave units) 
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Results: Quality of outputs (s16.15)
exp ln

Iterations Speed (CPU 
cycles) Accuracy(LSB*) Monotonic Accuracy Monotonic

32 10 2 Yes 2 Yes

28 9 4 Yes 2 Yes

24 8 8 Yes 2 Yes

20 7 11 Yes 2 Yes

16 6 15 Yes 2 No

12 5 19 No 3 No

8 4 23 No 7 No

4 3 27 No 11 No

* 1 LSB gives a result with maximum absolute error of 2-15=0.000030517578125;
2 LSB: max error is 2-14+2-15=0.000091552734375 etc.
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Physical library types

RTL design has to be mapped into physical logic gates or 
standard cells.
Two main categories of cells are usually available: LVT (Low-
Voltage-Threshold) and Super-LVT.
Priority: Minimise leakage as it is causing energy loss even 
when device is static.

Leakage

Sp
ee

d LVT

SLVT
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Results: Area/Speed/Leakage (Stand-
alone synthesis 250MHz@0.5V)

Iterations per 
clock cycle

Area 
(µm2)

Leakage (mW) SLVT cells Latency for full s16.15
accuracy (CPU cycles)

1 7157 0.026 29% 34

2 9905 0.026 29% 18

3 13071 0.05 39.4% 13

4 12254 0.062 49% 10

6 19290 0.232 71% 8

8 19458 0.252 70% 6
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Further work

• Floating-point interface.
• Compare to some other similar systems.
• Higher radix number system to improve latency
• Investigate speed/accuracy of spike history trace processing 

in STDP.
• Trigonometric function wrapper.
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Summary

• Hardware elementary functions are back in silicon in full 
force
• Iterative algorithm and implementation proposed
• Area/Leakage/Speed balance unclear – depends on many 

factors – even what kind of software is going to be 
modelled.
• Multi-precision opens research in approximate computing in 

neuromorphic applications
• Many improvements are possible for the next testchip



18/18

Questions


