

# Results from profiling SpiNNaker-1 and early ideas on SpiNNaker-2 accelerators

Mantas Mikaitis

#### Contents

- 1. Performance of SpiNNaker-1 large scale networks
- 2. SpiNNaker-2 and Spiking-Neural-Networks 2020 onwards
- 3. Accelerators with limited numerical precision and errors

### SpiNNaker simulation framework





# Effects of Scaling Networks on SpiNNaker

| Connectivity | Scaling<br>method                   | Connection<br>density | Average<br>indegree | Spikes | DMA<br>invocations | Interrupts |
|--------------|-------------------------------------|-----------------------|---------------------|--------|--------------------|------------|
|              | Original<br>network                 | 33%                   | 1/3                 | 1      | 1                  | 2          |
|              | Increase<br>connectivity<br>density | 100%                  | 1                   | 3      | 1                  | 2          |
|              | Increase<br>number of<br>sources    | 33%                   | 1                   | 3      | 3                  | 6          |
|              | Increase<br>number of<br>sources    | 33%                   | 1                   | 3      | 3                  | 6          |

# Profiling large scale fixed weight networks (Benchmark 1)



# Profiling large scale fixed weight networks (Benchmark 2)



Interrupt callback queue overloaded

# Profiling large scale plastic weight networks (Benchmark 3)



# Profiling large scale plastic weight networks (Benchmark 4)



Interrupt callback queue overloaded

# Maximum performance (No profiler overhead)



### Spiking Neural Networks 2020 and beyond



- Multi compartment neuron models, each with its own set of incoming synapses
- Multiple-factor synaptic plasticity
- Structural plasticity
- Intrinsic Hodgkin-Huxley type currents
- Neuromodulation of synaptic plasticity and intrinsic neuron properties (Volume transmission at high rates)

### SpiNNaker-2 chip pathway

- Prototype chip 1 (codename Santos) was already tested in 2016/2017.
- Prototype chip 2 (codename JIB1) is about to be manufactured
- Prototype chip 3 will be produced Q1 2019
- Final SpiNNaker-2 chip will be produced Q2 2020

### Feature comparison

#### SpiNNaker-1

- 18 ARM968 cores
- 96K memory per core
- 128MB Off-chip memory
- 1W power

#### SpiNNaker-2

- 144 ARM M4F cores
- 128K memory per core (With capability to use other core's memories)
- 2GB Off-chip memory
- Single precision floating point operations
- Random Number Generators
- Machine Learning Accelerator
- Elementary Functions
- 1W power

#### ARM M4F Floating-Point-Unit

- SpiNNaker-2 ARM core has a hardware unit for 32bit floating point arithmetic
- Apart from standard single-cycle ADD, MOVE, COMPARE, MULTIPLY operations, it also has some special operations:

| Operation                                | Cycles |
|------------------------------------------|--------|
| Convert between fixed and floating point | 1      |
| Multiply-accumulate/subtract(Fused)      | 3      |
| Square root                              | 14     |
| Divide                                   | 14     |

# Deep Learning with Limited Numerical Precision

- Deep learning is a machine learning method that given digital data can find patterns and classify data based on them
- Most common introductory example: handwritten digit recognition (MNIST dataset)
- Most common operation is inner product of two vectors (Matrix multiplication)
- Inner product requires doing many MAC (Multiplyaccumulate) operations
- All cells of the result matrix can be computed in parallel

# Deep Learning with Limited Numerical Precision



**a** and **b** are vectors with fixed-point elements of format *<IL*, *FL>* where IL – number of bits in the integer part and FL – number of bits in the fractional part.

- Inner product:  $\boldsymbol{a} \cdot \boldsymbol{b} = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + \dots + a_n b_n$
- Result of a product  $a_i b_i$  will have a fixed-point format <2\*IL, 2\*FL>
- Keep all MAC operations in full precision and round the number to <IL, FL> at the end

Round-to-nearest:  $Round(x, < IL, FL >) = \begin{cases} [x] & if [x] \le x \le [x] + \frac{\epsilon}{2} \\ [x] + \epsilon & if [x] + \frac{\epsilon}{2} < x \le [x] + \epsilon \end{cases}$ Stochastic rounding:  $Round(x, < IL, FL >) = \begin{cases} [x] & w.p \ 1 - \frac{x - [x]}{\epsilon} \\ [x] + \epsilon & w.p \ \frac{x - [x]}{\epsilon} \end{cases}$ 

where [x] is a largest integer less than or equal to x representable by <IL, FL> and  $\epsilon = 2^{-FL}$ 

# Deep Learning with Limited Numerical Precision



#### Gupta et al, 2015

### Deep Learning with Limited Numerical Precision



### Deep Learning with Limited Numerical Precision

- "Stochastic rounding [...] possesses the desirable property that the expected rounding error is zero"
- "It is well appreciated that in the presence of statistical approximation and estimation errors, high-precision computation in the context of learning is rather unnecessary"
- "Moreover, the addition of noise during training has been shown to improve the neural network's performance"
- "This work is built upon the idea that algorithm-level noise tolerance can be leveraged to simplify underlying hard-ware requirements"

# Floating vs Fixed Point Arithmetic in Hardware

Energy (pJ)

45nm, 0.9V



Data from: "High-Performance Hardware for Machine Learning", W. Dally, U.C. Berkeley, 2016

# Floating vs Fixed Point Arithmetic in Hardware



Data from: "High-Performance Hardware for Machine Learning", W. Dally, U.C. Berkeley, 2016

### Approximate Computing

# Introduce some level of error in the circuit to reduce area, power and delay. Application must be error tolerant.

- Probability of error 1/16
- Error magnitude 9-7=2
- When building larger multipliers, magnitude of error remains constant but probability of error rises
- Mean error saturates at 3.35%
- Mix accurate and inaccurate 2x2 multipliers to control error
- Power saving of up to 45%



- a) approximate 2x2 multiplier
- b) standard 2x2 multiplier

| $a_1a_0b_1b_0$ | out (approx) |  |  |
|----------------|--------------|--|--|
| 0000           | 0000         |  |  |
| 0001           | 0000         |  |  |
| 0010           | 0000         |  |  |
| 0011           | 0000         |  |  |
| 0100           | 0000         |  |  |
| 0101           | 0001         |  |  |
| 0110           | 0010         |  |  |
| 0111           | 0011         |  |  |
| 1000           | 0000         |  |  |
| 1001           | 0010         |  |  |
| 1010           | 0100         |  |  |
| 1011           | 0110         |  |  |
| 1100           | 0000         |  |  |
| 1101           | 0011         |  |  |
| 1110           | 0110         |  |  |
| 1111           | 0111         |  |  |

Kulkarni et al, 2011; Ercegovac 2013.

Image sharpening with approximate multiplier (Gaussian smoothing)



a) original picture; b) smoothing with accurate multiplier; c) smoothing with inaccurate multiplier (41.5% power reduction).

# Summary

- From profiling results, plasticity computation seems to be the main area to accelerate
- Future models will involve more and more differential equations per timer/spike interrupt
- Fastest accelerators can be implemented using fixed-point operations
- Rounding methods play crucial part in statistical results of the learning algorithms
- Approximate computing can be used to further reduce circuit sizes and delays
- Some SNN algorithms might need floating-point accuracy but others might get away with small reduced precision integers
- Which parts of SNNs can tolerate arithmetic errors and how much?

#### Questions