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SpiNNaker simulation	framework
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Single	Core	Performance	Profiling
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ARM	core ARM	core

ARM	core

ARM	core ARM	core

ARM	core

Scale	network	up

Building	cost	models	of	a	single	core
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Connectivity Scaling	
method

Connection	
density

Average	
indegree

Spikes DMA	
invocations

Interrupts

Original	
network 33% 1/3 1 1 2

Increase	
connectivity
density

100% 1 3 1 2

Increase	
number	of	
sources

33% 1 3 3 6

Increase	
number	of	
sources

33% 1 3 3 6

Effects	of	Scaling	Networks	on	SpiNNaker
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Profiling	large	scale	fixed	weight	networks
(Benchmark	1)
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target	core
per	1s

Synapses 80	000

Avg.	target	indegree 2000

Connections/s 240	000

MC	interrupts 24	000

DMA	interrupts 24	000
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Profiling	large	scale	fixed	weight	networks
(Benchmark	2)

x40

…3Hz

40000

25%

5Hz Activities	of
target	core
per	1s

Synapses 400 000

Avg. target	indegree 10	000

Connections/s 1.2Million

MC	interrupts 120	000

DMA	interrupts 120	000

Interrupt	callback queue	overloaded
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Profiling	large	scale	plastic	weight	networks
(Benchmark	3)
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…3Hz

7000
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5Hz Activities	of
target	core
per	1s

Synapses 70 000

Avg. target	indegree 1750

Connections/s 210	000

MC	interrupts 21 000

DMA	interrupts 21 000

100%DA

4.5Hz



9/25

Profiling	large	scale	plastic	weight	networks
(Benchmark	4)

x40

…3Hz

8000
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5Hz Activities	of
target	core
per	1s

Synapses 80 000

Avg. target	indegree 2000

Connections/s 240	000

MC	interrupts 24 000

DMA	interrupts 24 000

100%DA

4.5Hz

Interrupt	callback queue	overloaded
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Maximum	performance	(No	profiler	
overhead)
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Spiking	Neural	Networks	2020	and	beyond

Current	models: SpiNNaker-2	might
need	to	support:

Synapses	with	STDP

Point	neuron

Image	from	Schemmel et	al	2017
and	Larkum et	al	2009

• Multi	compartment	
neuron	models,	each	
with	its	own	set	of	
incoming	synapses

• Multiple-factor	synaptic	
plasticity

• Structural	plasticity
• Intrinsic	Hodgkin-Huxley	

type	currents
• Neuromodulation	 of	

synaptic	plasticity	and	
intrinsic	neuron	
properties	 (Volume	
transmission	at	high	
rates)
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SpiNNaker-2	chip	pathway

• Prototype	chip	1	(codename	Santos)	was	already	tested	in	
2016/2017.

• Prototype	chip	2	(codename	JIB1)	is	about	to	be	
manufactured

• Prototype	chip	3	will	be	produced	Q1	2019
• Final	SpiNNaker-2	chip	will	be	produced	Q2	2020
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Feature	comparison

SpiNNaker-1
• 18	ARM968	cores
• 96K	memory	per	core
• 128MB	Off-chip	memory
• 1W	power

SpiNNaker-2
• 144	ARM	M4F		cores
• 128K	memory	per	core	(With	
capability	to	use	other	core’s	
memories)

• 2GB	Off-chip	memory
• Single	precision	floating	point	
operations

• Random	Number	Generators
• Machine	Learning	Accelerator
• Elementary	Functions
• 1W	power
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ARM	M4F	Floating-Point-Unit

• SpiNNaker-2	ARM	core	has	a	hardware	unit	for	32bit	
floating	point	arithmetic

• Apart	from	standard	single-cycle	ADD,	MOVE,	COMPARE,	
MULTIPLY	operations,	it	also	has	some	special	operations:

Operation Cycles

Convert between	fixed	and	floating	point 1

Multiply-accumulate/subtract(Fused) 3

Square	root 14

Divide 14
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Deep	Learning	with	Limited	Numerical	
Precision

• Deep	learning	is	a	machine	learning	method	that	given	
digital	data	can	find	patterns	and	classify	data	based	on	
them

• Most	common	introductory	example:	handwritten	digit	
recognition	(MNIST	dataset)

• Most	common	operation	is	inner	product	of	two	vectors	
(Matrix	multiplication)

• Inner	product	requires	doing	many	MAC	(Multiply-
accumulate)	operations

• All	cells	of	the	result	matrix	can	be	computed	in	parallel
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Deep	Learning	with	Limited	Numerical	
Precision

a

b

a and	b are	vectors	with	fixed-point	elements	of
format	<IL,	FL>	where	IL	– number	of	bits	in	the
integer part	and	FL	– number	 of	bits	in	the
fractional	part.

• Inner	product:	𝒂 " 𝒃 = 	∑ 𝑎(𝑏( = 	 𝑎*𝑏* +⋯+ 𝑎-𝑏--
(.*

• Result	of	a	product	𝑎(𝑏( will	have	a	fixed-point	format	<2*IL,	2*FL>
• Keep	all	MAC	operations	 in	full	precision	and	round	 the	number	 to	<IL,	FL>	at	the	end

• Round-to-nearest:					𝑅𝑜𝑢𝑛𝑑 𝑥,< 𝐼𝐿, 𝐹𝐿 > = ;
𝑥 																						𝑖𝑓	 𝑥 ≤ 𝑥 ≤ 𝑥 + ?

@

𝑥 + 𝜖							𝑖𝑓	 𝑥 + ?
@
< 𝑥 ≤ 𝑥 + 𝜖

• Stochastic	rounding:	𝑅𝑜𝑢𝑛𝑑 𝑥, < 𝐼𝐿, 𝐹𝐿 > = B
𝑥 														𝑤.𝑝	1 − HI H

?

𝑥 + 𝜖														𝑤. 𝑝	 HI H
?

where	 𝑥 is	a	largest	integer	less	than	or	equal	to	𝑥 representable	by	<IL,	FL>	and	𝜖 = 2IKL

Gupta	et	al,	2015
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Deep	Learning	with	Limited	Numerical	
Precision

Gupta	et	al,	2015
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Deep	Learning	with	Limited	Numerical	
Precision

Gupta	et	al,	2015
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Deep	Learning	with	Limited	Numerical	
Precision

• “Stochastic	rounding	[…]	possesses	 the	desirable	property	
that	the	expected	 rounding	error	is	zero”

• “It	is	well	appreciated	that	in	the	presence	of	statistical	
approximation	and	estimation	errors,	high-precision	
computation	in	the	context	of	learning	is	rather	
unnecessary”

• “Moreover,	the	addition	of	noise	during	training	has	been	
shown	to	improve	the	neural	network’s	performance”

• “This	work	is	built	upon	the	idea	that	algorithm-level	noise	
tolerance	can	be	leveraged	to	simplify	underlying	hard-
ware	requirements”

Gupta	et	al,	2015
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Floating	vs	Fixed	Point	Arithmetic	in	
Hardware
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Data	from:	“High-Performance	Hardware	for	Machine	Learning”,	W.	Dally,	U.C.	Berkeley,	2016

45nm,	0.9V
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Floating	vs	Fixed	Point	Arithmetic	in	
Hardware
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Design	compiler,	 45nm
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Approximate	Computing
Introduce	some	level	of	error	in	the	circuit	to	reduce	area,	
power	and	delay.	Application	must	be	error	tolerant.

Kulkarni	et	al,	2011;	Ercegovac 2013.

a) approximate	2x2	multiplier
b) standard	2x2	multiplier

a1a0b1b0 out	(approx)

0000 0000

0001 0000

0010 0000

0011 0000

0100 0000

0101 0001

0110 0010

0111 0011

1000 0000

1001 0010

1010 0100

1011 0110

1100 0000

1101 0011

1110 0110

1111 0111

• Probability	of	error	1/16
• Error	magnitude	9-7=2
• When	building	 larger	

multipliers,	magnitude	
of	error	remains	
constant	but	probability	
of	error	rises

• Mean	error	saturates	at	
3.35%

• Mix	accurate	and	
inaccurate	2x2	
multipliers	 to	control	
error

• Power	saving	of	up	to	
45%
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Image	sharpening	with	approximate	
multiplier	(Gaussian	smoothing)

Kulkarni	et	al,	2011;	Ercegovac 2013.

a)	original	picture;	b)	smoothing	 with	accurate	multiplier;	 c)	smoothing	 with
inaccurate	multiplier	 (41.5%	power	reduction).
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Summary
• From	profiling	results,	plasticity	computation	seems	to	be	
the	main	area	to	accelerate

• Future	models	will	involve	more	and	more	differential	
equations	per	timer/spike	interrupt

• Fastest	accelerators	can	be	implemented	using	fixed-point	
operations

• Rounding	methods	play	crucial	part	in	statistical	results	of	
the	learning	algorithms

• Approximate	computing	can	be	used	to	further	reduce	
circuit	sizes	and	delays

• Some	SNN	algorithms	might	need	floating-point	accuracy	
but	others	might	get	away	with	small	reduced	precision	
integers

• Which	parts	of	SNNs	can	tolerate	arithmetic	errors	and	
how	much?
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Questions


