



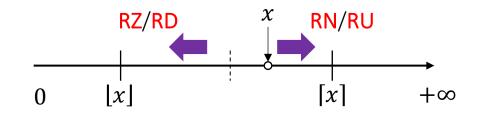
# Algorithms for Stochastically Rounded Elementary Arithmetic Operations in IEEE 754 Floating-Point Arithmetic

Massimiliano Fasi, Örebro University, Sweden <u>Mantas Mikaitis</u>, University of Manchester, UK

Contact: mantas.mikaitis@manchester.ac.uk

Presentation for SIAM CSE21, 2 March 2021. Minisymposium on Reduced Precision Arithmetic and Stochastic Rounding.

### Motivation of the project



- Rounding modes in the IEEE 754 standards:
  - RN—Round to Nearest, even on ties,
  - RZ—Round towards Zero,
  - **RU**—Round (Up) towards  $+\infty$ , and
  - RD—Round (Down) towards —∞.
- Stochastic Rounding (SR) is starting to appear in hardware.
- Benefits shown in NLA, PDE and ODE solv., machine learning.
- Simulate SR before it is ubiquitous to
  - test behaviour,
  - develop applications with SR,
  - Inform hardware of what is needed.

# Stochastic rounding (SR)

Definition after Connolly, Higham, and Mary (2021).

Given  $x \in \mathbb{R}$  with  $[x] \le x \le [x]$  (with floor and ceiling defined in FP), stochastic rounding (SR) is defined as

 $SR(x) = \begin{cases} [x] & \text{with the probability } k, \\ [x] & \text{with the probability } 1 - k. \end{cases}$ 

| Mode 1 | $k = \frac{x - \lfloor x \rfloor}{\lceil x \rceil - \lfloor x \rfloor}$ | $\begin{bmatrix} x \end{bmatrix}  x \qquad \begin{bmatrix} x \end{bmatrix}$       |
|--------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Mode 2 | k = 0.5                                                                 | $\begin{array}{c} 0 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ |

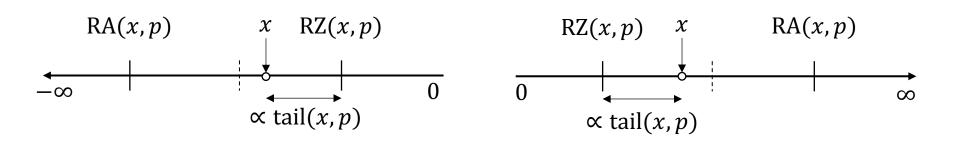
With mode 1,  $\mathbb{E}(SR(x)) = x$ .

# Bit-level definition of SR in floating-point

Mode 1 SR: given  $x \in \mathbb{R}$ , a random number  $Z \in [0,1)$  from a uniform distribution and the target precision p,

$$SR(x,p) = \begin{cases} RA(x,p) & \text{if } Z < tail(x,p), \\ RZ(x,p) & \text{if } Z \ge tail(x,p), \end{cases}$$

where  $tail(x, p) \in [0, 1)$  is <u>a value encoded by the trailing bits</u> that do not fit into precision p, RZ—round towards zero, RA—round away from zero.



# **SR** in software and hardware

- Can round numbers from hardware precision to lower prec:
  - Chop (MATLAB) by Higham and Pranesh (2019).
  - floatp (MATLAB) by Meurant (2020) includes floats, fixed point, and posits with SR.
  - CPFloat (C) by Fasi and Mikaitis (2020)—very efficient bit-wise implementation.
- Hardware (details not always provided):
  - Davies et al. (2018) included SR in the Intel Loihi chip (inside the MAC units).
  - Graphcore IPU (2020) includes binary16 arithmetic and SR.
  - There are various HW prototypes and patents appearing from the ML community.

### Contributions

#### <u>Problem</u>

- Current simulators round (with SR) to p precision using at least 2p precision.
- If we wish to simulate SR of a highest precision in some hardware, we cannot use current simulators.
- Except with arbitrary precision software (Advanpix, MPFR).

#### Our contributions

- Algorithms for  $+, -, \times, \div, \sqrt{\text{with SR}}$  in precision p.
- Generalization of binary64 algorithms by Févote and Lathuilière (2016) (<u>use RN only</u>).

#### No precision different to p required.

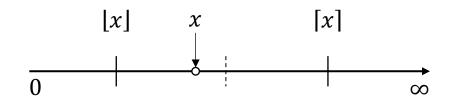
# Error-free transformations

Algorithm | : TWOSUM augmented addition.1 function TWOSUM( $a \in \mathcal{F}, b \in \mathcal{F}, \circ : \mathbb{R} \to \mathcal{F}$ )Compute  $\sigma, \tau \in \mathcal{F}$  s.t.  $\sigma + \tau = a + b$ .2 $\sigma \leftarrow \circ(a + b);$ 3 $a' \leftarrow \circ(\sigma - b);$ 4 $b' \leftarrow \circ(\sigma - a');$ 5 $\delta_a \leftarrow \circ(a - a');$ 6 $\delta_b \leftarrow \circ(b - b');$ 7 $\tau \leftarrow \circ(\delta_a + \delta_b);$ 8return  $(\sigma, \tau);$ 

Algorithm II : TWOPRODFMA augmented multiplication.

**function** TWOPRODFMA $(a \in \mathcal{F}, b \in \mathcal{F}, \circ : \mathbb{R} \to \mathcal{F})$ If a, b satisfy (5.1), compute  $\sigma, \tau \in \mathcal{F}$  s.t.  $\sigma + \tau = a \cdot b$ .  $\sigma \leftarrow \circ(a \times b);$  $\tau \leftarrow \circ(a \times b - \sigma);$  $return (\sigma, \tau);$ 

# Simulating SR of (and using) precision p



- Get the distance to x and use it for SR.
- Use *error-free transforms* to compute

 $\sigma \in \{\lfloor x \rfloor, \lceil x \rceil\}$ , and  $\tau = x - \sigma$ ,  $|\tau| \in [0, 2^{e_x} \varepsilon)$ , with  $e_x$  exponent of x, and  $\varepsilon = 2^{1-p}$ .

- Scale random number to be in  $[0, 2^{e_x}\varepsilon)$  rather than computing the tail(x, p) (avoid division).
- We use TwoSum and TwoProdFMA for + and ×.
- Transforms for  $\div$  and  $\sqrt{\text{exist}}$ , but small error in  $\tau$ .

# Class 1: SR addition (using RN/RZ/RU/RD)

Algorithm III : Stochastically rounded addition.

- 1 function  $ADD(a \in \mathcal{F}, b \in \mathcal{F})$  $Compute \ \varrho = SR(a+b) \in \mathcal{F}.$
- $\begin{array}{c|c} 2 & Z \leftarrow \text{rand}(); \\ 3 & (\sigma, \tau) \leftarrow \text{TWOSUM}(a, b, \text{RN}); \end{array}$
- $4 \qquad \eta \leftarrow \text{get}_\text{exponent}(\text{RZ}(a+b));$

5 
$$\pi \leftarrow \operatorname{sign}(\tau) \times Z \times 2^{\eta} \times \varepsilon;$$

ΤT

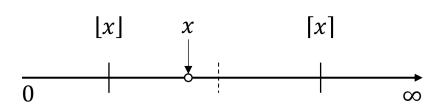
6 **if** 
$$\tau \ge 0$$
 then

$$\circ = \mathrm{RD};$$

$$\begin{array}{c|c}
8 & else \\
9 & \circ = R \\
\end{array}$$

10 
$$\rho \leftarrow \circ(\diamond(\tau + \pi) + \sigma);$$

11 return  $\varrho$ ;

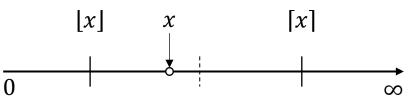


- $Z \in [0, 1)$  is a precision-p random value.
- Repeated addition with RZ deals with cases where
   [x] is a power of 2.
- We choose RD or RU to round towards  $\sigma$ .
- Comparison in SR def. is performed by the last addition step.

# Class 2: SR addition (using RN only)

**Algorithm** IV : A helper function for stochastic rounding.

```
1 function SRROUND(\sigma \in \mathcal{F}, \tau \in \mathcal{F}, Z \in \mathcal{F})
       Compute round \in \mathcal{F}.
           if \operatorname{sign}(\tau) \neq \operatorname{sign}(\sigma) then
 2
                 \eta \leftarrow \text{get\_exponent}(\text{pred}(|\sigma|));
  3
           else
 4
             \eta \leftarrow \text{get\_exponent}(\sigma);
  5
           ulp \leftarrow \operatorname{sign}(\tau) \times 2^{\eta} \times \varepsilon;
 6
           \pi \leftarrow \text{ulp} \times Z;
 7
           if |\text{RN}(\tau + \pi)| \ge |\text{ulp}| then
 8
                 round = ulp;
 9
           else
10
                 round = 0;
11
           return round;
12
```



- Approach similar to **binary64** implementation in VERROU package by **Févote and Lathuilière** (2016).
- Function pred() allows to avoid requirement of RZ.
- On line 8, comparison replaces RD/RU addition.
- Returns 0 (stay), ulp (go forward), or -ulp (go backward).

# **SR** addition (using only **RN**)

**Algorithm** V: Stochastically rounded addition without the change of the rounding mode.

- 1 function ADD2 $(a \in \mathcal{F}, b \in \mathcal{F})$ Compute  $\varrho = SR(a+b) \in \mathcal{F}$ . 2  $Z \leftarrow rand();$
- 3  $(\sigma, \tau) \leftarrow \text{TwoSum}(a, b, \text{RN});$
- 4 round  $\leftarrow$  SRROUND $(\sigma, \tau, Z)$ ;
- 5  $\rho \leftarrow \text{RN}(\sigma + \text{round});$
- 6  $\lfloor$  return  $\varrho$ ;

In summary, algorithms of <u>class 2 are expected</u> to be faster on Intel, while class 1 faster where switching rounding modes has no cost.

# Performance

- Implemented SR +,  $-, \times, \div, \sqrt{in \text{ binary64}}$ .
- Comparison with the approach that uses high-precision library.
- MPFR 4.0.1 for computing x in higher than binary64 precision.
- 100 pairs of **binary64** random numbers.
- Each op with each pair is repeated 10M times.
- Report mean throughput of ops (Mop/s) averaged over 100 pairs.
- Intel Xeon Gold 6130
- gcc 8.2.0, -mfma -mfpmath=sse -msse2 (<u>avoid 80-bit arithmetic</u>).
- -00 for algs. that change rounding modes and -03 for RNonly algs.

### Performance

#### Throughput (Mop/s):

|                           | sr_mpfr_add ADD |              | ADD2 sr_mpfr_mul |              | Mul           | Mul2         | sr_mpfr_div  |              | DIV          | DIV2          | sr_mpfr_sqrt |              |              | SQRT | SQRT2         |              |              |              |              |               |
|---------------------------|-----------------|--------------|------------------|--------------|---------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|------|---------------|--------------|--------------|--------------|--------------|---------------|
| MPFR bits                 | 61              | 88           | 113              | _            | _             | 61           | 88           | 113          | _            | _             | 61           | 88           | 113          | _    | -             | 61           | 88           | 113          | _            | -             |
| min                       | 3.5             | 3.7          | 3.5              | 18.5         | 62.5          | 3.7          | 3.7          | 3.7          | 32.2         | 66.6          | 3.3          | 3.4          | 3.4          | 31.2 | 62.5          | 3.6          | 3.0          | 2.8          | 28.5         | 52.6          |
| max                       | 3.8             | 4.2          | 4.0              | 31.2         | 71.4          | 4.2          | 4.1          | 4.0          | 34.4         | 76.9          | 3.6          | 3.6          | 3.6          | 33.3 | 71.4          | 4.2          | 3.6          | 3.6          | 30.3         | 58.8          |
| mean                      | 3.7             | 3.8          | 3.8              | 28.2         | 68.8          | 3.9          | 3.9          | 3.8          | 33.9         | 72.4          | 3.5          | 3.5          | 3.5          | 32.2 | 67.2          | 4.1          | 3.5          | 3.5          | 29.5         | 57.4          |
| $\hookrightarrow$ speedup | $0.9 \times$    | $1.0 \times$ | $1.0 \times$     | $7.3 \times$ | $17.9 \times$ | $1.0 \times$ | $1.0 \times$ | $1.0 \times$ | $8.7 \times$ | $18.6 \times$ | $1.0 \times$ | $1.0 \times$ | $1.0 \times$ | 9.1× | $19.0 \times$ | $1.1 \times$ | $1.0 \times$ | $1.0 \times$ | $8.3 \times$ | $16.3 \times$ |
| deviation                 | 0.1             | 0.1          | 0.1              | 2.3          | 2.5           | 0.1          | 0.1          | 0.1          | 0.6          | 2.3           | 0.1          | 0.1          | 0.1          | 0.4  | 1.9           | 0.1          | 0.1          | 0.1          | 0.4          | 1.7           |

 $7.3 \times$  to  $19 \times$  speedup over an approach that depends on the arithmetic of > 2p precision.

# Summary

- Hardware with **SR** is not yet widely available.
- Simulating **SR** before hardware available is an option.
- We have proposed alternative algorithms for simulating SR.
- Two classes: switch rounding modes or use only RN.
- Algorithms require only IEEE 754 operations, comparisons and some bit-level ops.
- 7.3× to 19× speedup compared with algorithms that require MPFR or similar.
- Preprint at <u>http://eprints.maths.manchester.ac.uk/2790/</u>.
- Implementations in C and MATLAB, and code for experiments available at

https://github.com/mmikaitis/stochastic-rounding-evaluation.

### References

- M. Connolly, N. J. Higham, and T. Mary. <u>Stochastic rounding and</u> <u>its probabilistic backward error analysis</u>. SIAM J. Sci. Comput., vol 43, 2021.
- N. Higham and S. Pranesh. <u>Simulating low precision floating-point arithmetic</u>. SIAM J. Sci. Comput., vol 41, 2019.
- G. Meurant. <u>https://gerard-meurant.pagesperso-orange.fr/</u>. 2020.
- M. Fasi and M. Mikaitis. <u>CPFloat: a C library for emulating low-precision arithmetic</u>. Preprint, 2020.
- M. Davies et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro, vol 38, 2018.
- Graphcore IPU. <u>https://docs.graphcore.ai/projects/ipu-overview/en/latest/about\_ipu.html</u>. 2020.
- F. Févote and B. Lathuilière. <u>VERROU: assessing floating-point</u> <u>accuracy without recompiling</u>. Preprint, 2016.