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Motivation of the project

• Rounding modes in the IEEE 754 standards:
§ RN—Round to Nearest, even on ties,
§ RZ—Round towards Zero,
§ RU—Round (Up) towards +∞, and
§ RD—Round (Down) towards −∞.

• Stochastic Rounding (SR) is starting to appear in hardware.
• Benefits shown in NLA, PDE and ODE solv., machine learning.
• Simulate SR before it is ubiquitous to

§ test behaviour,
§ develop applications with SR,
§ inform hardware of what is needed.

𝑥

𝑥 𝑥 +∞0

RZ/RD RN/RU
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Stochastic rounding (SR)

Definition after Connolly, Higham, and Mary (2021).
Given 𝑥 ∈ ℝ with 𝑥 ≤ 𝑥 ≤ 𝑥 (with floor and ceiling defined 
in FP), stochastic rounding (SR) is defined as

SR 𝑥 = ( 𝑥 with the probability 𝑘,
𝑥 with the probability 1 − 𝑘.

𝑥𝑥 𝑥

∝ 𝑘
∞0

Mode 1 𝑘 =
𝑥 − 𝑥
𝑥 − 𝑥

Mode 2 𝑘 = 0.5

With mode 1, 𝔼 SR 𝑥 = 𝑥.
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Bit-level definition of SR in floating-point

Mode 1 SR: given 𝑥 ∈ ℝ, a random number 𝑍 ∈ 0,1 from a 
uniform distribution and the target precision 𝑝,

where tail 𝑥, 𝑝 ∈ 0, 1 is a value encoded by the trailing bits
that do not fit into precision 𝑝, RZ—round towards zero, RA—
round away from zero.

SR 𝑥, 𝑝 = (
RA(𝑥, 𝑝) if 𝑍 < tail 𝑥, 𝑝 ,
RZ(𝑥, 𝑝) if 𝑍 ≥ tail 𝑥, 𝑝 ,

𝑥RZ(𝑥, 𝑝) RA(𝑥, 𝑝)

∝ tail(𝑥, 𝑝)
∞

𝑥RA(𝑥, 𝑝) RZ(𝑥, 𝑝)

∝ tail(𝑥, 𝑝)
−∞ 00
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SR in software and hardware

• Can round numbers from hardware precision to lower prec:
§ Chop (MATLAB) by Higham and Pranesh (2019).
§ floatp (MATLAB) by Meurant (2020) includes floats, fixed point, and 

posits with SR.
§ CPFloat (C) by Fasi and Mikaitis (2020)—very efficient bit-wise 

implementation.

• Hardware (details not always provided):
§ Davies et al. (2018) included SR in the Intel Loihi chip (inside the MAC 

units).
§ Graphcore IPU (2020) includes binary16 arithmetic and SR.
§ There are various HW prototypes and patents appearing from the ML 

community.
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Contributions

Problem
• Current simulators round (with SR) to 𝑝 precision using at 

least 2𝑝 precision.
• If we wish to simulate SR of a highest precision in some 

hardware, we cannot use current simulators.
• Except with arbitrary precision software (Advanpix, MPFR).

Our contributions
• Algorithms for +,−,×,÷, √ with SR in precision 𝑝.
• Generalization of binary64 algorithms by Févote and 

Lathuilière (2016) (use RN only).

No precision different to 𝑝 required.
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Error-free transformations
I

II
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Simulating SR of (and using) precision 𝑝

• Get the distance to 𝑥 and use it for SR.
• Use error-free transforms to compute

𝜎 ∈ { 𝑥 , 𝑥 }, and 𝜏 = 𝑥 − 𝜎, |𝜏| ∈ [0, 23!𝜀),
with 𝑒4 exponent of 𝑥, and 𝜀 = 2567.

• Scale random number to be in [0, 23!𝜀) rather than 
computing the tail(𝑥, 𝑝) (avoid division).
•We use TwoSum and TwoProdFMA for + and ×.
• Transforms for ÷ and √ exist, but small error in 𝜏.

𝑥𝑥 𝑥

∞0
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Class 1: SR addition (using RN/RZ/RU/RD)

• 𝑍 ∈ [0, 1) is a precision-𝑝
random value.

• Repeated addition with RZ
deals with cases where 
𝑥 is a power of 2.

• We choose RD or RU to 
round towards 𝜎.

• Comparison in SR def. is 
performed by the last 
addition step.

𝑥𝑥 𝑥

∞0

III
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Class 2: SR addition (using RN only)

• Approach similar to binary64 implementation in VERROU package 
by Févote and Lathuilière (2016).

• Function pred() allows to avoid requirement of RZ.
• On line 8, comparison replaces RD/RU addition.
• Returns 0 (stay), 𝑢𝑙𝑝 (go forward), or −𝑢𝑙𝑝 (go backward).

𝑥𝑥 𝑥

∞0

IV
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SR addition (using only RN)

V

In summary, algorithms of class 2 are expected 
to be faster on Intel, while class 1 faster where 

switching rounding modes has no cost.
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Performance

• Implemented SR +,−,×,÷, √ in binary64.
• Comparison with the approach that uses high-precision library.
• MPFR 4.0.1 for computing 𝑥 in higher than binary64

precision.
• 100 pairs of binary64 random numbers.
• Each op with each pair is repeated 10M times.
• Report mean throughput of ops (Mop/s) averaged over 100 

pairs.
• Intel Xeon Gold 6130
• gcc 8.2.0, -mfma -mfpmath=sse -msse2 (avoid 80-

bit arithmetic).
• –O0 for algs. that change rounding modes and –O3 for RN-

only algs.
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Performance

7.3× to 19× speedup over an approach that 
depends on the arithmetic of > 2𝑝 precision.

Throughput (Mop/s):



Efficient simulation of stochastic roundingMantas Mikaitis

14/14

Summary

• Hardware with SR is not yet widely available.
• Simulating SR before hardware available is an option.
•We have proposed alternative algorithms for simulating SR.
• Two classes: switch rounding modes or use only RN.
• Algorithms require only IEEE 754 operations, comparisons and 

some bit-level ops.
• 7.3× to 19× speedup compared with algorithms that require 
MPFR or similar.
• Preprint at http://eprints.maths.manchester.ac.uk/2790/.
• Implementations in C and MATLAB, and code for experiments 

available at
https://github.com/mmikaitis/stochastic-rounding-evaluation.

http://eprints.maths.manchester.ac.uk/2790/
https://github.com/mmikaitis/stochastic-rounding-evaluation
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