MANCHESTER NA

1824 . .
Manchester Numerical Analysis

The University of Manchester

Algorithms for Stochastically Rounded
Elementary Arithmetic Operations in
IEEE 754 Floating-Point Arithmetic

Massimiliano Fasi, Orebro University, Sweden
Mantas Mikaitis, University of Manchester, UK

Contact: mantas.mikaitis@manchester.ac.uk

Presentation for SIAM CSE21, 2 March 2021.

Minisymposium on Reduced Precision Arithmetic and Stochastic Rounding.

Mantas Mikaitis Efficient simulation of stochastic rounding

Motivation of the project

RZ/RD X RN/RU

|-§L-| R

\J I

I !
0 |x] |x] +00

* Rounding modes in the |IEEE 754 standards:
= RN—Round to Nearest, even on ties,
= RZ—Round towards Zero,
= RU—Round (Up) towards +oo, and
= RD—Round (Down) towards —oo.

e Stochastic Rounding (SR) is starting to appear in hardware.

* Benefits shown in NLA, PDE and ODE solv., machine learning.

* Simulate SR before it is ubiquitous to
= test behaviour,
= develop applications with SR,

= inform hardware of what is needed.
2/14

Mantas Mikaitis Efficient simulation of stochastic rounding

Stochastic rounding (SR)

Definition after Connolly, Higham, and Mary (2021).

Given x € R with [x] < x < [x] (with floor and ceiling defined
in FP), stochastic rounding (SR) is defined as

SR(x) = |x] with the probability k,
*)Z1|x] with the probability 1 — k.
Mode1 |k =—— 1 Xl x
x| = [x] ey | ‘
| o | o
Mode 2 k=05 0 Tk

With mode 1, E(SR(x)) = x.

3/14

Mantas Mikaitis Efficient simulation of stochastic rounding

Bit-level definition of SR in floating-point

Mode 1 SR: given x € R, a random number Z € [0,1) from a
uniform distribution and the target precision p,

_ |RA(x,p) if Z < tail(x, p),
SR(x, p) = {RZ(x, p) if Z > tail(x, p),

where tail(x,p) € [0, 1) is a value encoded by the trailing bits
that do not fit into precision p, RZ—round towards zero, RA—

round away from zero.

RA(x, p) x RZ(x,p) RZ(x,p) X RA(x, p)
| \ | | d | \
—o0 - 0 0 — | 0
« tail(x, p) « tail(x, p)

4/14

Mantas Mikaitis Efficient simulation of stochastic rounding

SR in software and hardware

* Can round numbers from hardware precision to lower prec:
" Chop (MATLAB) by Higham and Pranesh (2019).

= f1oatp (MATLAB) by Meurant (2020) includes floats, fixed point, and
posits with SR.

* CPFloat (C) by Fasi and Mikaitis (2020)—very efficient bit-wise
implementation.

* Hardware (details not always provided):

= Davies et al. (2018) included SR in the Intel Loihi chip (inside the MAC
units).
= Graphcore IPU (2020) includes binary16 arithmetic and SR.

= There are various HW prototypes and patents appearing from the ML
community.

5/14

Mantas Mikaitis Efficient simulation of stochastic rounding

Contributions

Problem

 Current simulators round (with SR) to p precision using at
least 2p precision.

* |f we wish to simulate SR of a highest precision in some
hardware, we cannot use current simulators.

* Except with arbitrary precision software (Advanpix, MPFR).

Qur contributions

e Algorithms for 4+, —,X,=, v with SR in precision p.

» Generalization of binary64 algorithms by Févote and
Lathuiliere (2016) (use RN only).

No precision different to p required.

6/14

Mantas Mikaitis Efficient simulation of stochastic rounding

Error-free transformations

Algorithm | : TWOSUM augmented addition.

1 function TWOSUM(a € F, b€ F,0: R — F)
Compute o,7 € F st.oc+7=a+b.

o < o(a+b);

a’ <+ o(o —b);

b o(oc —a);

0y <+ o(a —d');

55 — O(b — b’),‘

T < 0(0gq + b);

return (o, 7);

NN o G o WN

Algorithm || : TWOPRODFMA augmented multiplication.

1 function TWOPRODFMA(a € F,be F,0:R — F)
If a,b satisfy (5.1), compute o,7 € F s.t.c +T7 =a-b.

2 LJ(—o(axb);

3 | T« olaxb—o)
4 | return (o,7);

7/14

Mantas Mikaitis Efficient simulation of stochastic rounding

Simulating SR of (and using) precision p

|x] [x]

| I ; |

0 | ! | 0

* Get the distance to x and use it for SR.
» Use error-free transforms to compute
o € {|x],[x]}, and T = x — g, || € [0, 2%¢),
with e, exponent of x, and ¢ = 217P.

* Scale random number to be in [0, 2%¢¢) rather than
computing the tail(x, p) (avoid division).

e We use TwoSum and TwoProdFMA for + and X.

* Transforms for + and \/exist, but small errorin .

8/14

Mantas Mikaitis Efficient simulation of stochastic rounding

Class 1: SR addition (using RN/RZ/RU/RD)

Algorithm Il : Stochastically rounded addition.

1 function ADD(a € F, b€ F)
Compute o = SR(a +b) € F.

Z €0,1) is a precision-p

2 | Z « rand(); random value.

3 | (0,7) TWOsUlﬁ(a,?, RN));) e Repeated addition with RZ
4 n < get_exponent(RZ(a + b)); :

s | rsign(r) x Z x 27 x & deals with cases where

6 | if >0 then [x| is a power of 2.

7| | o=RD; * We choose RD or RU to

8 else

o | | o=RU; round towards o.

10 | 04 o(o(T +7) +0); * Comparison in SR def. is

11 [return g; performed by the last

addition step.

| x] [x]

O— X

9/14

Mantas Mikaitis Efficient simulation of stochastic rounding

Class 2: SR addition (using RN only)

Algorithm |V : A helper function for stochastic
rounding.

function SRROUND(c € F, T € F, Z € F)
Compute round € F.

=

2 | if sign(7) # sign(o) then

3 | 7 < get_exponent(pred(|o|)); | x| X [x]

4 else L

5 | 7+ get_exponent(o); I y I .
6 | ulp < sign(7) x 27 x g; 0 | 0
7 m <+ ulp X Z;

8 | if |RN(7 + m)| > |ulp| then

9 | round = ulp;

10 else

11 | round = 0;

12 return round;

Approach similar to binary64 implementation in VERROU package
by Févote and Lathuiliere (2016).

Function pred() allows to avoid requirement of RZ.

On line 8, comparison replaces RD/RU addition.

Returns 0 (stay), ulp (go forward), or —ulp (go backward).

10/14

Mantas Mikaitis Efficient simulation of stochastic rounding

SR addition (using only RN)

Algorithm V : Stochastically rounded addition without the change of the
rounding mode.

1 function ApD2(a € F, b € F)
Compute 9 = SR(a +b) € F.
Z < rand();
(o,7) + TwoSuM(a, b, RN);
round < SRROUND(o, 7, Z);
0 < RN(o + round);
return p;

S Ot W N

In summary, algorithms of class 2 are expected

to be faster on Intel, while class 1 faster where
switching rounding modes has no cost.

11/14

Mantas Mikaitis Efficient simulation of stochastic rounding

Performance

e Implemented SR +, —,X,+, v in binary64.
* Comparison with the approach that uses high-precision library.

e MPFR 4.0.1 for computing x in higher than binary64
precision.

* 100 pairs of binary64 random numbers.
e Each op with each pair is repeated 10M times.

* Report mean throughput of ops (Mop/s) averaged over 100
pairs.

* Intel Xeon Gold 6130

egcc 8.2.0, -mfma -mfpmath=sse -msse2 (avoid 80-
bit arithmetic).

e —00 for algs. that change rounding modes and —03 for RN-
only algs.

12/14

Mantas Mikaitis Efficient simulation of stochastic rounding

Performance

Throughput (Mop/s):

sr_mpfr_add ADD ADD2 sr_mpfr_mul MUL MUL2 sr_mpfr_div Div DIV2 sr_mpfr sqgrt SQRT SQRT2

MPER bits 61 88 113 - - 61 88 113 - - 61 88 113 - - 61 88 113 - -
min 35 37 35 185 625 37 37 37 322 666 33 34 34 312 625 36 30 28 285 526
max 38 42 40 312 714 42 41 40 344 769 36 36 36 333 714 42 36 36 303 588
mean 37 38 38 282 6838 39 39 38 339 724 35 35 35 322 672 41 35 35 295 574

—speedup 09x 1.0x 1.0x 73x 179x 1.0x 1.0x 1.0x 87x 18.6x 1.0x 1.0x 1.0x 91x 19.0x 11x 1.0x 1.0x 83x 16.3x
deviaton 01 01 01 23 25 01 01 01 06 23 01 01 01 04 19 01 01 01 04 1.7

7.3X to 19X speedup over an approach that

depends on the arithmetic of > 2p precision.

13/14

Mantas Mikaitis Efficient simulation of stochastic rounding

Summary

* Hardware with SR is not yet widely available.

* Simulating SR before hardware available is an option.

* We have proposed alternative algorithms for simulating SR.
* Two classes: switch rounding modes or use only RN.

* Algorithms require only IEEE 754 operations, comparisons and
some bit-level ops.

e 7.3X to 19X speedup compared with algorithms that require
MPFER or similar.

* Preprint at http://eprints.maths.manchester.ac.uk/2790/.

* Implementations in C and MATLAR, and code for experiments
available at

https://github.com/mmikaitis/stochastic-rounding-evaluation.

14/14

http://eprints.maths.manchester.ac.uk/2790/
https://github.com/mmikaitis/stochastic-rounding-evaluation

Mantas Mikaitis Efficient simulation of stochastic rounding

References

M. Connolly, N. J. Higham, and T. Mary. Stochastic rounding and
its probabilistic backward error analysis. SIAM J. Sci. Comput.,

vol 43, 2021.

N. Higham and S. Pranesh. Simulating low precision floating-
point arithmetic. SIAM J. Sci. Comput., vol 41, 2019.

G. Meurant. https://gerard-meurant.pagesperso-orange.fr/.
2020.

M. Fasi and M. Mikaitis. CPFloat: a C library for emulating low-
precision arithmetic. Preprint, 2020.

M. Davies et al. Loihi: a neuromorphic manycore processor with
on-chip learning. IEEE Micro, vol 38, 2018.

Graphcore IPU. https://docs.graphcore.ai/projects/ipu-
overview/en/latest/about ipu.html. 2020.

F. Févote and B. Lathuiliere. VERROU: assessing floating-point
accuracy without recompiling. Preprint, 2016.

15/14

https://epubs.siam.org/doi/10.1137/20M1334796
https://epubs.siam.org/doi/abs/10.1137/19M1251308
https://gerard-meurant.pagesperso-orange.fr/
http://eprints.maths.manchester.ac.uk/2785/
http://doi.org/10.1109/MM.2018.112130359
https://docs.graphcore.ai/projects/ipu-overview/en/latest/about_ipu.html
https://hal.archives-ouvertes.fr/hal-01383417/document

