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Introduction

In binary floating-point hardware round-to-nearest (RN) is a default
mode (standardized by IEEE 754).

Deterministic, optimal accuracy per operation.

Closest machine number to real answer—cannot improve.

Over many rounding ops may accumulate error of factor n, where n a
problem size.

What we get from today’s talk

Learn about the implementation of stochastic rounding (SR) which
enforces probabilistic error bound with factor

√
n.
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Floating-point (FP) number representation

A floating-point system F ⊂ R is described with β, t, emin, emax with
elements

x = ±m × βe−t+1.

Virtually all computers have β = 2 (binary FP).

Here t is precision, emin ≤ e ≤ emax an exponent, m ≤ βp − 1 a
significand (m, t, e ∈ Z).

Standard model [Higham, 2002]

Given x , y ∈ R that lie in the range of F it can be shown that

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u,

where u = 2−t , op ∈ {+,−,×} and round-to-nearest mode.
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Rounding error analysis

Rounding errors δ accumulate. For example, consider computing
s = x1y1 + x2y2 + x3y3.

We compute ŝ with

ŝ =
((

x1y1(1 + δ1) + x2y2(1 + δ2)
)
(1 + δ3) + x3y3(1 + δ4)

)
(1 + δ5)

= x1y1(1 + δ1)(1 + δ3)(1 + δ5) + x2y2(1 + δ2)(1 + δ3)(1 + δ5)

+ x3y3(1 + δ4)(1 + δ5).

Therefore we deal with a lot of terms of the form
∏n

i=1(1 + δi ).

Worst case backward error bound (exact result for perturbed inputs)∏n
i=1(1+ δi ) = 1+ θn, |θn| ≤ γn, with γn = nu

1−nu and assuming nu < 1.
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What is stochastic rounding

With stochastic rounding (SR), we are not rounding a number to the
same direction, but to either direction with probability.

Given some x and FP neighbours ⌊x⌋, ⌈x⌉, we round to ⌈x⌉ with prob. p
and ⌊x⌋ with p − 1.

Mode 1 SR (nearness): p = x−⌊x⌋
⌈x⌉−⌊x⌋ Mode 2 SR: p = 0.5

Mode 2

With Mode 1 SR we round x depending on its distances to the nearest
two FP numbers, cancelling out errors of different signs.
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Rounding error analysis with SR

Standard error model for SR

With SR we replace u by 2u since it can round to the second nearest
neighbour in F .

Rounding error analysis

Worst-case error analysis determines the upper bounds of errors, while
probabilistic error analysis describes more realistic bounds.

Worst-case b-err bound with RN: nu
1−nu .

Probabilistic bound with RN: λ
√
nu +O(u2) w. p. 1− 2ne−λ2/2.

Requires an assumption that δn are mean independent zero-mean
quantities—often satisfied [Connolly, Higham, Mary, 2021].

Wilkinson rule of thumb
√
nu error growth is a rule of thumb with RN, but always holds with SR.
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Example error growth with SR in mat-vec prod

Backward error in y = Ax where A ∈ R100×n with entries from uniform
dist over [0, 10−3] and x ∈ Rn over [0, 1]: maxi

|ŷ−y |i
(|A||x |)i .
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Stagnation

Take binary floating-point numbers a and b, such that a ≫ b and
fl(a+ b) = a (round-to-nearest).

In sums of arbitrary length, sn = x1 + x2 + · · ·+ xn, stagnation appears if,
for example, fl(x1 + xi ) = xi for i ≤ n and therefore ŝn = x1.

If xi > 0, the total error is x2 + · · ·+ xn, which is a growth of factor
(n − 1)u.

The assumptions in probabilistic bound for RN do not hold.

Stagnation/swamping

Whole, part, or parts of a running sum do not change the intermediate
value, and addends contribute wholly to the error.
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Stagnation

With SR, stagnation is not as severe as with RN.

Take again a and b, such that a ≫ b and with RN fl(a+ b) = a.

With SR fl(a+ b) will yield a or the next floating-point value with
probability b

ulp(a) where ulp(a) is the gap between a and next fl. val.

Stagnation with SR

Stagnation can still occur if b is so small that its significand gets shifted
past the random bits in SR; probabilistic bounds will not hold and drop
back to factor nu.
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Other theoretical results

[Arar, Sohier, Castro, Petit, 2022, 2023] extend the probabilistic bound
results to Horner’s scheme and tighten some of the bounds.

Follow references therein for various other results: Ipsen & Zhou
(probabilistic bounds), Croci & Giles (PDE solvers).

Key takeaways from theory about SR

Probabilistic bounds hold unconditionally.

Experimentally
√
n growth is observed.

Stagnation that breaks assumptions for probabilistic bounds with RN,
does not appear in SR.

But beware of stagnation in limited-precision SR—it can still occur and
break probabilistic bound assumptions.
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How do we implement this? First, consider standard modes

Consider a, b ∈ F with a, b > 0 and a > b.

a:

b:

a:

b: R

sticky bit
OR all bits

round-sticky RD RU RN

00 D D D
01 D U D
10 D U D/U
11 D U U

Guard bit

Guard bit is a complication that arises when we consider non-normalized
floating-point significands, to compute the R bit correctly.
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Implementation of SR

Take mt to be a high precision unrounded significand from an operation.

Take t to be source precision and k the precision of random numbers.
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Zero bits

Random bits

Non-random bits
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Fixed-point inner product implementation

Probably one of the first
hardware implementations of
SR by [Gupta et al. 2015].

18-bit fixed-point
inputs/outputs.

Exact dot products in 48-bit
internal format.

SR applied once, at the end
on an exact 48-bit result
matrix.

LSFR for PRNG.

SR: 4% HW overhead.
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Hybrid fixed/floating-point hardware implementation

Data in (64/32 bits) Config (5 bit)

000...

31 bit

32/64

signed
arithmetic

000...32/64{sign}

01

data inputsign extension

32/64

Pick 32/16
bits of

unrounded
result

Pick top
32 bits of
residual to

round

+ PRNG

127

Detect
overflow

in
the input

Pick the
top 32 bits
after result

32

32

c_out

bit_31

round mode
01

+

32

Saturation
32

4

32

Design and synthesis study available
[Mikaitis, 2021].

RN and SR in one.

32- or 64-bit fixed-point inputs.

Programmable destination precision:
round 1 to 32 bits.

binary32 → bfloat16 rounding (16 bits).

32-bit uniform PRNG with 4 separate
streams (seeds can come from TRNG).

Accelerator integrated to each core in a
152-core chip (ARM M4F).

Operation: Write to a memory location,
read back rounded.
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Eager rounding implementation in accumulation

[Ali, Filip, Sentieys, 2024] propose
an approach to lower critical path.

Applied in deep learning: 8-bit FP
products accumulated in 12-bit FP.

Accumulator is rounded
stochastically. No rounding in
multiplier—exact.

Lazy implementation: perform SR
after normalization of sum
(implement algorithm step-by-step).

Eager implementation: perform SR
after the alignment of significands,
correct later if needed.
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Patents from industry

There are numerous patents for SR from industry giants: NVIDIA, AMD,
IBM. See our SR survey [Croci et al, 2022].

Here we focus on NVIDIA’s ([NVIDIA, 2019]).

Below binary32 → binary16 example.

Does not use PRNG.

Take 8 bottom discarded
bits and add to the top 8.

Deterministic and cheaper to
implement.

Effect on numerical results
not known.
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SR in hardware

Commercial hardware that implements SR is for machine learning:

Graphcore IPU

Intel Loihi

Tesla Dojo

Amazon Trainium
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Custom precision simulators with SR

Various packages available: chop, FLOATP, QPyTorch.

Usual approach is to perform ops in binary32/64 HW.

Round down to sub-32-bit precision: careful with double rounding.

We believe ours is most customizable and fastest: CPFloat [Fasi &
Mikaitis, 2023].

Can be used in MATLAB, Octave or C.

M. Mikaitis (Leeds) Stochastic rounding April 2024 18 / 25



Example with CPFloat in MATLAB

>> options.format = 'bfloat16';
>> options.round = 5;

>> cpfloat(pi, options)

ans =

3.142578125000000

>> options.format = 'fp8-e5m2';
>> cpfloat(pi, options)

ans =

3.500000000000000

>> cpfloat(pi, options)

ans =

3

>> cpfloat(pi*pi, options)

ans =

10
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Proposed IEEE 754 style properties

There is no standard way to implement SR.

We proposed a set of rules ([Croci et al, 2022]):

If x ∈ F , SR(x) = x .

If x is in the range of F , round as though x is held in t + k bits and
rounded to t bits.

Overflows: numbers between maximum value and ±∞: round as
though exponent is not limited.

When x is smaller than the smallest representable number, round
stochastically to zero or that smallest number.

If subnormals are disabled, round to zero or smallest normalized
value.

±∞ and ±0 should not be changed. NaNs should not be rounded.

Exceptions signalled as standard.
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Proposed IEEE 754 style properties: outstanding questions

What PRNG requirements should be specified: algorithms, quality?

What are requirements around k (precision of PRNG)?

What to do with argument bits past t + k pre-SR application: drop or
round?
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Random number precision in SR

The question of k, precision of random numbers in SR, still open.

We did some experiments with ODE solvers in fixed-point arithmetic
(Hopkins et al, 2020).
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Summary

Key points

Theory promises clear advantages with SR where probabilistic bounds
do not hold for RN.

Beware that stagnation can still occur with SR.

Implementations are known, but key questions on random number
generation remain.

Precision and quality of random numbers.

No official standard.

More details in the stochastic rounding survey paper

M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis. Stochastic
rounding: implementation, error analysis and applications. R. Soc. Open

Sci.. Mar. 2022.
https://bit.ly/3Kzw7mA.
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