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Errors in computing and the role of rounding

• Every computer simulation contains errors.
1. Errors in data collection from a system,
2. errors in mathematical models of the system,
3. errors in numerical approximations of the models, and
4. errors in data and arithmetic (rounding).

• Errors in class 4 are usually believed to be lowest.
• For many years reasonable assumption due to 32/64-bit arith.
• Recently 8/16-bit HW also appears next to 32/64-bit.
•Mixed-precision algorithms with error class 4 more significant.
• Next: 8/16-bit HW without 32/64-bit?
• Class 4 error will probably require reducing.
• Various ways to address at HW and algorithm level.
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IEEE 754-2019 floating-point standard

Rounding modes:
• RN – Round to nearest, even on ties
• RZ – Round towards zero
• RU – Round (up) towards +∞
• RD – Round (down) towards −∞

Also, non-standard 
bfloat16 (𝑝 = 8).
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Novel hardware with reduced precision

• 16-bit floating-point in HW from NVIDIA, ARM, Intel, Google.
• 129 machines in the June TOP500 list contain NVIDIA devices 

with binary16 arithmetic.
•Mainly Matrix Multiply-Accumulate (MMA), but also general 

purpose arithmetic.
• List of recent hardware with low-prec. MMA:

https://www.top500.org/lists/top500/2020/06/
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Stochastic rounding (SR)

Definition after Connolly, Higham, and Mary [1].
Given 𝑥 ∈ ℝ with 𝑥 ≤ 𝑥 ≤ 𝑥 (when 𝑥 ∉ 𝐹 it is between the 
two neighbouring floats), stochastic rounding (SR) is defined as

SR 𝑥 = - 𝑥 with the probability 𝑝,
𝑥 with the probability 1 − 𝑝.

Mode 1: 𝑝 = 0.5; Mode 2: 𝑝 = $% $
&'(($)

.

With mode 2, 𝔼 SR 𝑥 = 𝑥.

𝑥𝑥 𝑥

∝ 𝑝
∞0
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Bit-level definition of SR in FP

Given a real number 𝑥, a random number 𝑃 ∈ 0,1 from a 
uniform distribution and the target precision 𝑝,

where tail 𝑥, 𝑝 ∈ 0, 1 is a value encoded by the trailing bits 
that do not fit into precision 𝑝 (a residual), RZ – round towards 
zero, RA – round away from zero.

SR 𝑥, 𝑝 = -
RA(𝑥, 𝑝) if 𝑃 < tail 𝑥, 𝑝 ,
RZ(𝑥, 𝑝) if 𝑃 ≥ tail 𝑥, 𝑝 ,

𝑥RZ(𝑥, 𝑝) RA(𝑥, 𝑝)

∝ tail(𝑥, 𝑝)
∞

𝑥RA(𝑥, 𝑝) RZ(𝑥, 𝑝)

∝ tail(𝑥, 𝑝)
−∞ 00
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Early papers on SR

• Forsythe, 1950 [2], 1959 [3] proposed SR mode 2 to make 
rounding errors independent random values; allows using 
probabilistic error bounds.
“Tests with I. B. M. equipment indicate that random round-off 

probably eliminates a priori the peculiarities of round-off found 
by Huskey on the ENIAC” [2].

• Hull and Swensen, 1966 [4] use SR mode 2 to test whether 
random errors behave in the same fashion as ordinary errors.
• Vignes, 1993 [4], Jézéquel and Chesneaux, 2008 [5] use SR 

mode 1 for estimating round-off error propagation.
• SR mode 2 (round to integer) appears in Physics lit. as well, 

for example in 1986 [6] and 1989 [7].
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Monte Carlo arithmetic

• Parker, 1997 [8] proposes Monte Carlo(MC) arithmetic with 
both SR modes. Tool for empirical analysis of round-off errors.
• Févote and Lathuilière, 2016 [9] present industrial software 

based on MC arith. with both SR modes.
• Denis et al. 2018 [10] present LLVN compiler extension for 

performing numerical analysis automatically using MC arith.
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None of the previously discussed works 
propose to replace RN mode with SR for 

reducing errors at runtime.
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SR in machine learning

•M. Höhfeld and S. E. Fahlman, 1992 [11] and Gupta et al, 
2015 [12] propose SR mode 2 to train neural networks.
• SR allowed to reduce hardware to 6 bits in [11].
• SR allowed [12] to train 16-bit fixed-point neural networks 

almost as accurately as binary32.
• SR applied on fixed-point inner products in [12].
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Ordinary Differential Equations (ODE) in fixed-
point arithmetic

• In [13] we applied SR when solving neuron ODEs in fixed-
point.
• Spike time lag/lead.
• Cause: round-off errors.
• 32-bit fixed-point arith.
• Goal: get closer to float.
• Reproducibility.

𝑑𝑉
𝑑𝑡 = 0.04𝑉! + 5𝑉 + 140 − 𝑈 + 𝐼 𝑡 ,

𝑑𝑈
𝑑𝑡 = 𝑎 𝑏𝑉 − 𝑈 ,

if 𝑉 ≥ 30 mV, 𝑉 = 𝑐, 𝑈 = 𝑈 + 𝑑.
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Testing method of Izhikevich ODE solutions

• Four ODE solvers: RK2 Midpoint, RK2 Trapezoid, RK3 
Heun, Chan-Tsai.

• Two different neuron types (regular and fast spiking –
RS/FS).

• Five arithmetics: IEEE 754 binary64 (reference), 
binary32, fixed-point {round-down, round-to-nearest, 
stochastic}.

• Run for ~1min to produce around 600 spikes.
• For SR, repeat experiment 100 times with different PRNG 

seeds.
• Report mean and std. dev. spike lag of each spike.
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Spike lags: 2nd order solvers (ℎ = 0.1 𝑚𝑠)
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Spike lags: 3rd order solvers (ℎ = 0.1 𝑚𝑠)
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Psuedo-random number generation

• Set of G. Marsaglia’s KISS generators (expensive on ARM but 
pass randomness tests) [15].
• Linear congruential generator (modular arithmetic by 

overflow of 32-bit registers):

• For our tests, no significant difference (mean & std. dev.)!
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ODEs in floating-point arithmetics

𝑛 (ℎ = 1/𝑛) 𝑛 (ℎ = 2!"/𝑛)

Ab
s.

 e
rr

or

Work with M. Fasi [14] (Preprint).
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ODEs in floating-point arithmetics

Work with M. Fasi [14] (Preprint).

Use Euler’s 
method to 
draw unit 
circle:

𝑢"#$ = 𝑢" + ℎ𝑣" ,
𝑣"#$ = 𝑣" − ℎ𝑢" ,

with 𝑢% = 1, 𝑣% = 0,
ℎ = 2𝜋/𝑛.
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Backward error results

•M. Connolly et al. 2020 [1] show that in the upper bound of 
backward error, term 𝑛𝑢 can be replaced by 𝑛𝑢.
• Show that the long standing rule of thumb is a rule for SR.
• The authors also show
that with SR

• Proves various fl pt prop.
that still hold and that do
not hold anymore with SR.
• First analysis of SR.

𝑥P𝑦 in binary16, unif [0,1] vec.

𝔼 Ll 𝑥P𝑦 = 𝑥P𝑦.
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Stagnation: core issue that SR addresses

• SR mainly addresses a problem of stagnation.
• In Ll 𝑎 + 𝑏 , if 𝑎 or 𝑏 is much smaller than the other, it will be 

rounded off to 0.
• Long summation and thus dot products have this problem if a 

basic recursive summation algorithm is used.
• SR alleviates this by occasionally rounding up small terms.
• Basic example assuming integer rounding:

RN 0.25 + RN 0.25 + RN 0.25 + RN 0.25 = 0,
whereas

SR 0.25 + SR 0.25 + SR 0.25 + SR 0.25 =
0,1,2,3, or 4 most likely 0 or 1 .
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Summation examples
Consider truncated harmonic series

𝐻Q 𝑠R = 𝑠R +X
STU

Q
1
𝑖
= 𝑠R + 1 +

1
2
+
1
3
…+

1
𝑘
.

Work with M. Fasi [14] (Preprint).



Low-precision Arithmetics and Stochastic RoundingMantas Mikaitis

21/27

Summation examples
Consider summing random values

𝑆Q 𝑠R = 𝑠R +X
STU

Q

𝑥S .

Work with M. Fasi [14] (Preprint).
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Given the output from the multiplier:

answer somewhere in this gap

Residual bits

If       < residual
round up, else round down.

Use these bits as 
probability of 

rounding up, [0,1).

Implementation of SR
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Exploration of varied bit-width in SR

Given the output from multiplier:

Use SOME of these 
bits as probability 
of rounding up, 

[0,1).

Work with M. Hopkins, 2019 [13].



Low-precision Arithmetics and Stochastic RoundingMantas Mikaitis

24/27

SR in hardware

• Davies et al. 2018 [16] included SR in the Intel Loihi chip 
(inside the MAC units).
• Graphcore IPU [17] includes binary16 arithmetic and SR.
• I designed a small unit for doing SR on the upcoming 

SpiNNaker2 chip [18] (not part of ARM – fixed-point numbers 
in full precision come from ARM and then into this unit; also 
binary32 to bfloat16 SR).
• SpiNNaker2 uses one of KISS PRNGs for SR [15].
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Software tools to simulate SR

For now we can easily study the behaviour of SR in software. 
Can round numbers from working precision to lower prec:
• Chop MATLAB library by Higham and Pranesh [19].
• G. Meurant’s MATLAB floatp library [20] includes floats, 

fixed point, and posits with SR.
• Upcoming custom precision float library in C – very 

efficient bit-wise impl. (work with M. Fasi; preprint and 
code available soon).

Algorithms for implementing SR in working precision without 
needing extended prec. libraries, by Fasi and Mikaitis [14].
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Further research questions

• Applications where SR is useful (and where not).
• Complexity of PRNGs (and how many bits to use in SR).
• IEEE 754-2019 recommends augmented arithmetic 

operations that return answers as well as exact errors.
•Will allow fast compensated summation algorithms.
• Assuming augmented operations will appear in HW, how 

does non-augmented+SR compare to those (accuracy, 
hardware cost)?
• HW complexity of binary16+SR versus standard 

binary32/binary64 and binary16+wider accumulator.
• Overhead of SR must not cancel out the HW savings of 

switching to binary16.
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• Rounding errors become more problematic as precisions in 
HW are reducing.
• SR is one of the interesting techniques that helps.
• SR helps to delay stagnation in long sums.
• Not yet widely available in HW, but some exists.
• Potential way to drop complicated binary32/64 units in some 

computers.
• Requires HW research to show how binary16+SR compares to 

standard binary32/64 arithmetic units.
• Other ways to improve accuracy of low-precision HW (wider 

internal registers, augmented ops).

Conclusion
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