Stochastic Rounding: Implementation, Error analysis, and Applications

Mantas Mikaitis

School of Computing, University of Leeds, Leeds, UK

Manchester SIAM-IMA Student Chapter Conference Manchester, UK, Apr. 27, 2023

Introduction

- Computers use limited precision arithmetic for most calculations.
- Most operations (+, $\times,-)$ result in bit growth.
- Rounding used to keep fixed precision.
- Almost always round-to-nearest (RN).
- Deterministic, optimal accuracy per operation.
- Accumulates error of factor n, where n a problem size.

What we get from today's talk

Learn about the theory, implementation, and applications of stochastic rounding (SR) which accumulates error of factor \sqrt{n}.

Floating-point (FP) number representation

A floating-point system $F \subset \mathbb{R}$ is described with $\beta, p, e_{\min }, e_{\max }$ with elements

$$
x= \pm m \times \beta^{e-p+1}
$$

Virtually all computers have $\beta=2$ (binary FP).
Here p is precision, $e_{\min } \leq e \leq e_{\max }$ an exponent, $m \leq \beta^{p}-1$ a significand $(m, p, e, m \in \mathbb{Z}$).

Toy FP system

Below: the positive numbers in $F\left(\beta=2, p=3, e_{\min }=-2, e_{\max }=3\right)$.

Standard FP arithmetic: IEEE 754

- The standard established to achieve consistency between implementations.
- First appeared 1985, updated 2008 and 2019.
- Recommended number formats, operations, rounding modes, mathematical functions, accuracy.
- Most computers comply with this standard.

Formats with $\beta=2$ from the standard. $f_{\min } —$ smallest normalized value, $s_{\text {min }}$-smallest denormalized value, $f_{\max }$-largest value.

	binary16	binary32	binary64
p	11	24	53
$e_{\min }$	-14	-126	-1022
$e_{\max }$	15	127	1023
$f_{\min }$	2^{-14}	2^{-126}	2^{-1022}
$s_{\min }$	2^{-24}	2^{-149}	2^{-1074}
$f_{\max }$	$2^{15}\left(2-2^{-10}\right)$	$2^{127}\left(2-2^{-23}\right)$	$2^{1023}\left(2-2^{-52}\right)$

Floating-point format encoding

Numbers are held in memory using bits (convenient when $\beta=2$).
Main IEEE 754 formats (double, single, half):

Some non-standard formats (but see IEEE P3109):

IEEE 754 standard FP arithmetic: rounding

- Round-to-nearest (RN) (ties even)
- Round-toward-zero (RZ)
- Round-down (RD)
- Round-up (RU)

Use of rounding modes

RN is usually enabled by default. Directed modes used for special cases, such as interval arithmetic.

What is stochastic rounding

In stochastic rounding (SR), we are not rounding a number to the same direction, but to either direction with probability.

Given some x and FP neighbours $\lfloor x\rfloor,\lceil x\rceil$, we round to $\lceil x\rceil$ with prob. p and $\lfloor x\rfloor$ with $p-1$.

Mode 1 SR: $p=\frac{x-\lfloor x\rfloor}{\lceil x\rceil-\lfloor x\rfloor} \quad$ Mode 2 SR: $p=0.5$

Mode 2

With Mode 1 SR we are rounding x depending on its distances to the nearest two FP numbers, cancelling out errors of different signs.

Mode 1 SR example

Consider rounding real numbers to integers. Round 0.25 indefinitely and then consider running total error.

Note that with SR, probability of rounding up is 0.25 while rounding down is 0.75 .

With RN the total error from n roundings is $-0.25 n$.
With SR, we can assume we round up on every 4th number. Error growth:

$$
\begin{array}{rccc}
\downarrow-0.25 & \downarrow-0.5 & \downarrow-0.75 & \uparrow 0 \\
\uparrow 0.75 & \downarrow 0.5 & \downarrow 0.25 & \downarrow 0
\end{array}
$$

SR compared with RN

Operator fl(x)

By $\mathrm{f}(x)$ we denote any rounding operator that maps a number $x \in \mathbb{R}$ to F.
With both rounding modes

- If $x \in F \mathrm{fl}(x)=x$.
- (Sterbenz's lemma) If $x, y \in F$ with $y / 2 \leq x \leq 2 y$ then $\mathrm{fl}(x-y)=x-y$.
Key differences of SR:
- In general $\mathrm{fl}(|x|) \neq|\mathrm{fl}(x)|$ and $\mathrm{fl}(-x) \neq-\mathrm{fl}(x)$.
- $x \leq y$ does not imply $\mathrm{fl}(x) \leq \mathrm{fl}(y)$ (non-monotonicity).
- $\mathrm{fl}(n \times \mathrm{fl}(m / n))=m$ does not always hold.
[Connolly, Higham, Mary, 2021].

Early history

First mention by Forsythe [Forsythe, 1950]. Used in solving ODEs on early computers. Early ideas for implementation (add random numbers to round-off digits).

First hardware implementation by Barnes [Barnes et al., 1951]. Decimal 8-digit arithmetic. Mode 2. Simpler to implement than RN.

A form of SR was explored by Hull \& Swenson [Hull and Swenson, 1966], used to test probabilistic error models.

SR in machine learning

SR resurfaced in machine learning, in 1992 and then 2015.

- [Höhfeld and Fahlman, 1992] used SR in training at very low precisions, such as 13 bits.
- Update $w+\Delta w$ does not take effect as Δw rounded to zero.
- Clamping Δw to min. val. causes non-convergence.
- Round Δw to the minimum representable value with prob. proportional to Δw.
- [Gupta et al., 2015] used SR for training ML models with 16-bit fixed-point arithmetic.

SR in hardware

Commercial hardware that implements SR is 100% for machine learning:

- Graphcore IPU
- Intel Loihi
- Tesla Dojo
- Amazon Trainium

Stagnation in FP summation

Stagnation in floating-point

In summation, stagnation occurs when $\mathrm{fl}(a+b)=a$ for $a \gg b$ and $b \rightarrow 0$.
Stagnation is well illustrated with a divergent series

$$
\sum_{i=1}^{\infty} 1 / i=1+1 / 2+1 / 3 \cdots
$$

Here the addends are getting smaller while the total sum is increasing.

In limited precision arithmetic, the addends will eventually round off and the series converge.

Stagnation in FP summation

Below, stagnation/convergence points:

- RN: when the sum stops changing.
- SR: when the sum does not change for a significant number of iterations.

Arithmetic	Terms	Sum
binary64 RN	2^{48}	34.122
binary32 RN	2097152	15.404
binary32 SR	$\sim 50 \times 10^{6}$	18.303
binary16 RN	513	7.0859
binary16 SR	3.5×10^{6}	16.078

Rounding error analysis

Given $x \in \mathbb{R}$ that lies in the range of F it can be shown that

$$
\mathrm{fl}(x)=x(1 \mathrm{op} \delta), \quad|\delta| \leq u
$$

where $u=2^{-p}$ and $\mathrm{op} \in\{+,-, \times\}$.

Model of arithmetic

This is one of the standard models used to analyse rounding errors.

Rounding error analysis

Rounding errors δ accumulate. For example, consider computing $s=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$.

We compute \widehat{s} with

$$
\begin{aligned}
\widehat{s}= & \left(\left(x_{1} y_{1}\left(1+\delta_{1}\right)+x_{2} y_{2}\left(1+\delta_{2}\right)\right)\left(1+\delta_{3}\right)+x_{3} y_{3}\left(1+\delta_{4}\right)\right)\left(1+\delta_{5}\right) \\
= & x_{1} y_{1}\left(1+\delta_{1}\right)\left(1+\delta_{3}\right)\left(1+\delta_{5}\right)+x_{2} y_{2}\left(1+\delta_{2}\right)\left(1+\delta_{3}\right)\left(1+\delta_{5}\right) \\
& +x_{3} y_{3}\left(1+\delta_{4}\right)\left(1+\delta_{5}\right) .
\end{aligned}
$$

Therefore we deal with a lot of terms of the form $\prod_{i=1}^{n}\left(1+\delta_{i}\right)$.

Worst case backward error bound (exact result for perturbed inputs)

$\prod_{i=1}^{n}\left(1+\delta_{i}\right)=1+\theta_{n}, \quad\left|\theta_{n}\right| \leq \gamma_{n}$, with $\gamma_{n}=\frac{n u}{1-n u}$.

Rounding error analysis with SR

Standard error model for SR

With SR we replace u by $2 u$ since it can round to the second nearest neighbour in F.

Rounding error analysis

Worst-case error analysis determines the upper bounds of errors, while probabilistic error analysis describes more realistic bounds.

- Worst-case b-err bound with RN: $\frac{n u}{1-n u}$.
- Probabilistic bound with RN: $\lambda \sqrt{n}+\mathcal{O}\left(u^{2}\right)$ w. p. $1-2 e^{-\lambda^{2} / 2}$. Requires an assumption that δ_{n} are mean independent zero-mean quantities—often satisfied [Connolly, Higham, Mary, 2021].

Rule of thumb

$\sqrt{n} u$ error growth is a rule of thumb with RN, but always holds with SR.

Numerical example: $\sum_{i=1}^{n} 1 / i=1+1 / 2+1 / 3 \cdots$
(a) binary 16 arithmetic

(b) bfloat16 arithmetic

$$
\begin{aligned}
& -\theta-\mathrm{RN} \\
& ---\min (n u, 1)
\end{aligned}
$$

\rightarrow - SR average
$\cdots \cdot \min (\sqrt{n} u, 1)$

Implementation of SR

Take m_{t} to be a high precision unrounded significand from an operation.

Take p to be source precision and k the precision of random numbers.

Random bits
\square Zero bits

Proposed IEEE 754 style properties

Proposed standard set of rules for $\operatorname{SR}(x)$:

- If $x \in F, \operatorname{SR}(x)=x$.
- If x is in the range of F, round as though x is held in $p+k$ bits and rounded to p bits.
- Overflows: numbers between maximum value and $\pm \infty$: round as though exponent is not limited.
- When x is smaller than the smallest representable number, round stochastically to zero or that smallest number.
- If subnormals are disabled, round to zero or smallest normalized value.
- $\pm \infty$ and ± 0 should not be changed. NaNs should not be rounded.
- Exceptions signalled as standard.

Simulation of $S R$ in software

- CPFloat: MATLAB, C; Custom precision floating-point.
- chop: MATLAB; Custom precision floating-point.
- FLOATP: MATLAB; Custom precision floating-point and fixed-point.
- QPyTorch: Python; Custom precision floating-point.

Simulation in high precision

Usual technique is to perform calculations in high precision and then round to lower. Rounding is performed by adding random bits to the round-off bits or by comparison.

Applications: ODE solvers in fixed-point arithmetic

First experimental demonstration of the efectiveness of SR outside machine learning [Hopkins, Mikaitis, Lester, Furber, 2020].

Solve ODEs that model biological neurons.

$$
\begin{aligned}
& \frac{d V}{d t}=0.04 V^{2}+5 V+140-U+I(t) \\
& \frac{d U}{d t}=a(b V-U)
\end{aligned}
$$

If $V \geq 30 \mathrm{mV}$ (spike), $V=c, U=U+d$.
Electical current spike times are the key in these. Spike lag should be minimized.

Applications: ODE solvers in fixed-point arithmetic

$$
\begin{array}{|ll}
-- \text { binary } 64, h=0.1 \mathrm{~ms} & -\mathrm{s} 16.15, h=0.1 \mathrm{~ms} \\
\cdots \quad \text { binary } 64, h=1 \mathrm{~ms} & -\cdots \mathrm{s} 16.15, h=1 \mathrm{~ms} \\
\hline
\end{array}
$$

Applications: ODE solvers in fixed-point arithmetic

Applications: ODE solvers in floating-point arithmetic

Solve two equations using the Euler's method:

- $y_{n+1}=y_{n}-h y_{n}$, with $y_{0}=2^{-6}$, in $[0,1]$ with timestep $h=1 / n$.
- $y_{n+1}=y_{n}-h \frac{y_{n}}{20}$, with $y_{0}=1$, in $\left[0,2^{-6}\right]$ with timestep $h=2^{-6} / n$.

Experiment by changing n

Increase $n \in\left[10,10^{6}\right]$ until h on the order of the rounding errors of a particular arithmetic.

Applications: ODE solvers in floating-point arithmetic

- - binary64
- *- bfloat16 with RN
- \uparrow - binary 16 with RN
- *- binary32 RN
$\square-$ bfloat16 with SR average
bfloat16 with SR range
\triangleq binary 16 with $S R$ average
** binary 32 SR average binary16 with SR range \square binary32 with SR range

Applications: ODE solvers in floating-point arithmetic

Another example. Solve

$$
u^{\prime}(t)=v(t), v^{\prime}(t)=-u(t)
$$

with $u(0)=1, v(0)=0$ this is a unit circle in $u v$ plane.
Using the Euler's method (step size $h=2 \pi / n$):

$$
u_{k+1}=u_{k}+h v_{k}, v_{k+1}=v_{k}-h u_{k} .
$$

Experiment through h

Increase n until h is on the order of round-off error.

Applications: ODE solvers in floating-point arithmetic

$$
\begin{array}{llll}
\text { (a) } n=2^{5} & \text { (b) } n=2^{9} & \text { (c) } n=2^{11} & \text { (d) } n=2^{13}
\end{array}
$$

(e) $n=2^{5}$
(f) $n=2^{9}$
(g) $n=2^{14}$
(h) $n=2^{16}$

Exact

Applications: numerical linear algebra

Backward error in $y=A x$ where $A \in \mathbb{R}^{100 \times n}$ with entries from uniform dist over $\left[0,10^{-3}\right]$ and $x \in \mathbb{R}^{n}$ over $[0,1]$.
(a) binary 16 arithmetic
(b) bfloat16 arithmetic

Other applications

See the paper for further details.

- PDE solvers.
- Numerical verification software.
- Quantum computing.
- Privacy preserving in data sets.

Summary

Main takeaway

SR instead of RN provides lower error accumulation in applications that can stagnate, such as summation, dot product, matrix multiply, ODE and PDE solvers, in low precision and/or large dimensions.

Open research questions about SR:

- Precision of random numbers.
- Where to use SR in conjunction with RN.
- Implementation of SR alongside RN in hardware.

Paper

M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis. Stochastic rounding: implementation, error analysis and applications. R. Soc. Open Sci. Mar. 2022.
〇 https://bit.ly/3Kzw7mA.

References I

E. Forsythe

Round-off errors in numerical integration on automatic machinery. Bull. Am. Math. Soc. 56. 1950.
R. R. M. Barnes, E. H. Cooke-Yarborough, D. G. A. Thomas

An electronic digital computor using cold cathode counting tubes for storage.
Electron. Eng. 23. 1951.

- T. E. Hull, J. R. Swenson

Tests of probabilistic models for propagation of roundoff errors.
Commun. ACM. 9. 1966.
(M. Höhfeld and S. E. Fahlman
Learning with limited numerical precision using the cascade correlation algorithm.
IEEE Trans. Neural. Netw. 3. 1992

References II

S. Gupta, A. Agrawal, K. Gopalakrishnan, P. Narayanan Deep learning with limited numerical precision. Proc. of the 32nd Int. Conf. on Machine Learning. 2015.
固 M. P. Connolly, N. J. Higham, T. Mary
Stochastic rounding and its probabilistic backward error analysis.
SIAM J. Sci. Comput. 43. 2021.

- M. Hopkins, M. Mikaitis, D. R. Lester, S. Furber

Stochastic rounding and reduced-precision fixed-point arithmetic for solving neural ordinary differential equations.
Phil. Trans. R. Soc. 378. 2020.

