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Introduction

Computers use limited precision arithmetic for most calculations.

Most operations (+, ×, −) result in bit growth.

Rounding used to keep fixed precision.

Almost always round-to-nearest (RN).

Deterministic, optimal accuracy per operation.

Accumulates error of factor n, where n a problem size.

What we get from today’s talk

Learn about the theory, implementation, and applications of stochastic
rounding (SR) which accumulates error of factor

√
n.
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Floating-point (FP) number representation

A floating-point system F ⊂ R is described with β, p, emin, emax with
elements

x = ±m × βe−p+1.

Virtually all computers have β = 2 (binary FP).

Here p is precision, emin ≤ e ≤ emax an exponent, m ≤ βp − 1 a
significand (m, p, e, m ∈ Z).

Toy FP system

Below: the positive numbers in F (β = 2, p = 3, emin = −2, emax = 3).
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Standard FP arithmetic: IEEE 754

The standard established to achieve consistency between
implementations.

First appeared 1985, updated 2008 and 2019.

Recommended number formats, operations, rounding modes,
mathematical functions, accuracy.

Most computers comply with this standard.

Formats with β = 2 from the standard. fmin—smallest normalized value,
smin—smallest denormalized value, fmax—largest value.

binary16 binary32 binary64

p 11 24 53
emin -14 -126 -1022
emax 15 127 1023
fmin 2−14 2−126 2−1022

smin 2−24 2−149 2−1074

fmax 215(2− 2−10) 2127(2− 2−23) 21023(2− 2−52)
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Floating-point format encoding

Numbers are held in memory using bits (convenient when β = 2).

Main IEEE 754 formats (double, single, half):

Some non-standard formats (but see IEEE P3109):
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IEEE 754 standard FP arithmetic: rounding

Round-to-nearest (RN) (ties even)

Round-toward-zero (RZ)

Round-down (RD)

Round-up (RU)

Use of rounding modes

RN is usually enabled by default. Directed modes used for special cases,
such as interval arithmetic.
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What is stochastic rounding

In stochastic rounding (SR), we are not rounding a number to the same
direction, but to either direction with probability.

Given some x and FP neighbours ⌊x⌋, ⌈x⌉, we round to ⌈x⌉ with prob. p
and ⌊x⌋ with p − 1.

Mode 1 SR: p = x−⌊x⌋
⌈x⌉−⌊x⌋ Mode 2 SR: p = 0.5

Mode 2

With Mode 1 SR we are rounding x depending on its distances to the
nearest two FP numbers, cancelling out errors of different signs.
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Mode 1 SR example

Consider rounding real numbers to integers. Round 0.25 indefinitely
and then consider running total error.

Note that with SR, probability of rounding up is 0.25 while rounding down
is 0.75.

With RN the total error from n roundings is −0.25n.

With SR, we can assume we round up on every 4th number. Error
growth:

↓ −0.25 ↓ −0.5 ↓ −0.75 ↑ 0

↑ 0.75 ↓ 0.5 ↓ 0.25 ↓ 0
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SR compared with RN

Operator fl(x)

By fl(x) we denote any rounding operator that maps a number x ∈ R to F .

With both rounding modes

If x ∈ F fl(x) = x .

(Sterbenz’s lemma) If x , y ∈ F with y/2 ≤ x ≤ 2y then
fl(x − y) = x − y .

Key differences of SR:

In general fl(|x |) ̸= |fl(x)| and fl(−x) ̸= −fl(x).

x ≤ y does not imply fl(x) ≤ fl(y) (non-monotonicity).

fl(n × fl(m/n)) = m does not always hold.

[Connolly, Higham, Mary, 2021].
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Early history

First mention by Forsythe [Forsythe, 1950]. Used in solving ODEs on early
computers. Early ideas for implementation (add random numbers to
round-off digits).

First hardware implementation by Barnes [Barnes et al., 1951]. Decimal
8-digit arithmetic. Mode 2. Simpler to implement than RN.

A form of SR was explored by Hull & Swenson [Hull and Swenson, 1966],
used to test probabilistic error models.
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SR in machine learning

SR resurfaced in machine learning, in 1992 and then 2015.

[Höhfeld and Fahlman, 1992] used SR in training at very low
precisions, such as 13 bits.

Update w +∆w does not take effect as ∆w rounded to zero.
Clamping ∆w to min. val. causes non-convergence.
Round ∆w to the minimum representable value with prob.
proportional to ∆w .

[Gupta et al., 2015] used SR for training ML models with 16-bit
fixed-point arithmetic.
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SR in hardware

Commercial hardware that implements SR is 100% for machine learning:

Graphcore IPU

Intel Loihi

Tesla Dojo

Amazon Trainium
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Stagnation in FP summation

Stagnation in floating-point

In summation, stagnation occurs when fl(a+ b) = a for a ≫ b and b → 0.

Stagnation is well illustrated with a divergent series

∞∑
i=1

1/i = 1 + 1/2 + 1/3 · · ·

Here the addends are getting smaller while the total sum is increasing.

In limited precision arithmetic, the addends will eventually round off
and the series converge.

M. Mikaitis (Leeds) Stochastic rounding April 2023 13 / 31



Stagnation in FP summation

Below, stagnation/convergence points:

RN: when the sum stops changing.

SR: when the sum does not change for a significant number of
iterations.

Arithmetic Terms Sum

binary64 RN 248 34.122
binary32 RN 2097152 15.404
binary32 SR ∼ 50× 106 18.303
binary16 RN 513 7.0859
binary16 SR 3.5× 106 16.078
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Rounding error analysis

Given x ∈ R that lies in the range of F it can be shown that

fl(x) = x(1 op δ), |δ| ≤ u,

where u = 2−p and op ∈ {+,−,×}.

Model of arithmetic

This is one of the standard models used to analyse rounding errors.
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Rounding error analysis

Rounding errors δ accumulate. For example, consider computing
s = x1y1 + x2y2 + x3y3.

We compute ŝ with

ŝ =
((

x1y1(1 + δ1) + x2y2(1 + δ2)
)
(1 + δ3) + x3y3(1 + δ4)

)
(1 + δ5)

= x1y1(1 + δ1)(1 + δ3)(1 + δ5) + x2y2(1 + δ2)(1 + δ3)(1 + δ5)

+ x3y3(1 + δ4)(1 + δ5).

Therefore we deal with a lot of terms of the form
∏n

i=1(1 + δi ).

Worst case backward error bound (exact result for perturbed inputs)∏n
i=1(1 + δi ) = 1 + θn, |θn| ≤ γn, with γn = nu

1−nu .
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Rounding error analysis with SR

Standard error model for SR

With SR we replace u by 2u since it can round to the second nearest
neighbour in F .

Rounding error analysis

Worst-case error analysis determines the upper bounds of errors, while
probabilistic error analysis describes more realistic bounds.

Worst-case b-err bound with RN: nu
1−nu .

Probabilistic bound with RN: λ
√
n +O(u2) w. p. 1− 2e−λ2/2.

Requires an assumption that δn are mean independent zero-mean
quantities—often satisfied [Connolly, Higham, Mary, 2021].

Rule of thumb
√
nu error growth is a rule of thumb with RN, but always holds with SR.
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Numerical example:
∑n

i=1 1/i = 1 + 1/2 + 1/3 · · ·

102 104 106
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10−1

n

B
a
ck
w
ar
d
er
ro
r

(a) binary16 arithmetic

102 104 106

10−3

10−1

n

(b) bfloat16 arithmetic

RN SR average SR range

min(nu, 1) min(
√
nu, 1)
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Implementation of SR

Take mt to be a high precision unrounded significand from an operation.

Take p to be source precision and k the precision of random numbers.
ca
rr
y
bi
t

im
pl
ic
it
bi
t

fr
ac
ti
on

mt

mr

p k

Zero bits

Random bits

Non-random bits
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Proposed IEEE 754 style properties

Proposed standard set of rules for SR(x):

If x ∈ F , SR(x) = x .

If x is in the range of F , round as though x is held in p + k bits and
rounded to p bits.

Overflows: numbers between maximum value and ±∞: round as
though exponent is not limited.

When x is smaller than the smallest representable number, round
stochastically to zero or that smallest number.

If subnormals are disabled, round to zero or smallest normalized
value.

±∞ and ±0 should not be changed. NaNs should not be rounded.

Exceptions signalled as standard.
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Simulation of SR in software

CPFloat: MATLAB, C; Custom precision floating-point.

chop: MATLAB; Custom precision floating-point.

FLOATP: MATLAB; Custom precision floating-point and fixed-point.

QPyTorch: Python; Custom precision floating-point.

Simulation in high precision

Usual technique is to perform calculations in high precision and then round
to lower. Rounding is performed by adding random bits to the round-off
bits or by comparison.
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Applications: ODE solvers in fixed-point arithmetic

First experimental demonstration of the efectiveness of SR outside
machine learning [Hopkins, Mikaitis, Lester, Furber, 2020].

Solve ODEs that model biological neurons.

dV

dt
= 0.04V 2 + 5V + 140− U + I (t)

dU

dt
= a(bV − U)

If V ≥ 30mV (spike), V = c , U = U + d .

Electical current spike times are the key in these. Spike lag should be
minimized.
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Applications: ODE solvers in fixed-point arithmetic
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Applications: ODE solvers in fixed-point arithmetic
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Applications: ODE solvers in floating-point arithmetic

Solve two equations using the Euler’s method:

yn+1 = yn − hyn, with y0 = 2−6, in [0, 1] with timestep h = 1/n.

yn+1 = yn − h yn
20 , with y0 = 1, in [0, 2−6] with timestep h = 2−6/n.

Experiment by changing n

Increase n ∈ [10, 106] until h on the order of the rounding errors of a
particular arithmetic.
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Applications: ODE solvers in floating-point arithmetic
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(a) y ′ = −y , y(0) = 2−6, over [0, 1].

102 104 106
10−9

10−5

10−1

n

(b) y ′ = −y/20, y(0) = 1 over [0, 2−6].

binary64

bfloat16 with RN binary16 with RN binary32 RN

bfloat16 with SR average binary16 with SR average binary32 SR average

bfloat16 with SR range binary16 with SR range binary32 with SR range
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Applications: ODE solvers in floating-point arithmetic

Another example. Solve

u′(t) = v(t), v ′(t) = −u(t)

with u(0) = 1, v(0) = 0 this is a unit circle in uv plane.

Using the Euler’s method (step size h = 2π/n):

uk+1 = uk + hvk , vk+1 = vk − huk .

Experiment through h

Increase n until h is on the order of round-off error.

M. Mikaitis (Leeds) Stochastic rounding April 2023 27 / 31



Applications: ODE solvers in floating-point arithmetic
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RN
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Exact SR average SR range RN
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Applications: numerical linear algebra

Backward error in y = Ax where A ∈ R100×n with entries from uniform
dist over [0, 10−3] and x ∈ Rn over [0, 1].
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(a) binary16 arithmetic
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(b) bfloat16 arithmetic

RN SR SR range

min(nu, 1) min(
√
nu, 1)
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Other applications

See the paper for further details.

PDE solvers.

Numerical verification software.

Quantum computing.

Privacy preserving in data sets.
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Summary

Main takeaway

SR instead of RN provides lower error accumulation in applications that
can stagnate, such as summation, dot product, matrix multiply, ODE and
PDE solvers, in low precision and/or large dimensions.

Open research questions about SR:

Precision of random numbers.

Where to use SR in conjunction with RN.

Implementation of SR alongside RN in hardware.

Paper

M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis. Stochastic
rounding: implementation, error analysis and applications. R. Soc. Open

Sci.. Mar. 2022.
https://bit.ly/3Kzw7mA.
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