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Monotonicity of summation

Summation over real values

f (x1, x2, ..., xn) =
n∑

i=1

xi ,

is monotonic because for any xi < x∗i we have that

f (x1, ..., xn) ≤ f (x∗1 , ..., x
∗
n ).

Monotonicity

With multivariate monotonic functions, if one or more of the arguments is
increased, the function also increases or stays constant.
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Today’s talk

When computing summation in floating-point arithmetic we would like
to preserve monotonicity of the sum.

Some of the known properties of floating point:

✓ Commutativity: fl(a× b) = fl(b × a).

× Associativity: fl(a+ fl(b + c)) ̸= fl(fl(a+ b) + c).

× Distributivity: fl(a× fl(b + c)) ̸= fl(fl(a× b) + fl(a× c)).

? Monotonicity

By the end of this talk...

learn about the monotonicity of floating-point sum and how it is affected
by the mathematical hardware computing it.
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Addition of multiple numbers in floating point

We are used to adding numbers in pairs, using a two-term FP adders.

IEEE 754 adder computes as though in infinite precision, then
normalizes and rounds.

Multi-term adders

Latest hardware includes specialized multi-term adders alongside the
standard two-term addition.
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Classification of multi-term adders

Standard model [Higham, 2002]

Floating-point addition defined with

fl(x + y) = (x + y)(1 + δ), |δ| ≤ 2−p

where fl() refers to normalizing and rounding x + y to form a
floating-point value defined by IEEE 754.

Following classes of multi-term adders are present in current hardware
literature:

Class I (exact “Kulisch” accumulator) and Class II (compute
sticky bits correctly [Tenca, 2009]): fl(x1 + x2 + ...+ xn).

Class III (chain of two-term adders):
fl(fl(· · · fl(x1 + x2) + · · · ) + xn).
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Monotonicity in FP: basic results

Rounding fl(x) is monotonic by definition.

Addition fl(x + y) is monotonic.

Summation fl(fl(· · · fl(x1 + x2) + · · · ) + xn) is monotonic for any n
(Class III).

Multiplication fl(x × y) is monotonic.

Inner product fl(· · · fl(fl(a1 × b1) + fl(a2 × b2)) + · · ·+ fl(an × bn)) is
monotonic (Class III).

Fused computations fl(x1 + xn + · · ·+ xn) are monotonic (Class I/II).

Proofs

The proofs of these come down to the monotonicity of rounding and work
with the main IEEE 754 rounding modes: round-to-nearest,
round-towards-zero, round-up, and round-down.
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Monotonicity in FP: basic results

But there is a catch: changing order can break monotonicity because in
general fl(a+ fl(b + c)) ̸= fl(fl(a+ b) + c).

Example in binary32: a = 1,
fl(fl(fl(fl(a+ 2−24) + 2−24) + 2−24) + 2−24) = 1.

Now decrease a to a = 1− 2−24 and change the order of evaluation:
fl(fl(fl(fl(2−24 + 2−24) + 2−24) + 2−24) + a) = 1 + 2−22.

Community knows this behaviour well and expects this.

But if order is unchanged this is not expected to happen.
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Standard floating-point representation

A binary floating-point number x has the form (−1)s ×m × 2e−p+1

s is the sign bit, p is the precision, m ∈ [0, 2p − 1] is the integer
significand, and e ∈ [emin, emax], with emin = 1− emax, is the integer
exponent.

The number system is normalized so that the most significant bit of
m is always set to 1 if |x | ≥ 2emin .

Floating-point numbers with 2p−1 ≤ m ≤ 2p − 1 are normalized.

Normalization

The result of an operation must be normalized by shifting the significand
left or right until it falls within the interval [2p−1, 2p − 1] and adjusting
the exponent accordingly.
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Class IV multi-term adders

Modified standard model

We define an adder that starts with some precision p and can grow
precision when carries occur in floating-point significand addition.

flr(a+ b) =

{
flp(a+ b) if |a+ b| < t,

flp+1(a+ b) if |a+ b| ≥ t,
(1)

with |a| ≥ |b|, t = 21+⌊log2 |a|⌋, power of two nearest to |a| with |a| < |t|.

When this adder is joined to compute expressions such as
flr(flr(x1 + x2) + x3), precision increases propagate.

Sum with n additions can grow precision from p to p + ⌈log2n⌉.
Similar device used by [Ashenhurst and Metropolis, 1959] for error
analysis.
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Class IV multi-term adders

Algorithm 0: Given numbers {x1, ..., xn}, with exponents {e1, ..., en}
and significands {1.m1, ..., 1.mn} approximate sn =

∑n
i=1 xi .

Determine emax = max(e1, ..., en)
Align all 1.mi by shifting each emax − ei steps right
Perform addition of aligned significands
Perform normalization and rounding to form sn

We can partially model Class IV adders: fl(flr(· · · flr(x1 + x2) + · · · ) + xn).

Hardware properties:

start in limited precision accumulator p,
do not normalize and round until the computation is finished,
due to carries, grow effective precision.

Note flr() does not account for lack of normalization after cancellation,
where precision loss occurs. Not addressed in this work.
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Monotonicity: example on current hardware

Originally observed in [Fasi, Higham, Pranesh, Mikaitis, 2021].

Recent GPUs contain hardware for D = A× B + C where A ∈ R8×8 and
B ∈ R8×4 are binary16 matrices, C , D ∈ R8×4 are binary32 matrices.

We will focus on two result elements in D:

d11 = a11b11 + a12b21 + · · ·+ a18b81 + c11

d12 = a11b12 + a12b22 + · · ·+ a18b82 + c12

We set A,B = 1 (matrices of ones) and c11 = 33554430 and
c12 = 33554432.

Computing A× B + C with a GPU returns a matrix that has
d11 = 33554436 and d12 = 33554432.

Since c11 < c12 but d11 > d12 the 9-term sum is nonmonotonic.
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Commercial devices

Year Device/Architecture Input formats Output formats Terms Predicted class

2016 Google TPUv2 bfloat16 binary32 - Class III
2017 Google TPUv3 bfloat16 binary32 - Class III
2018 NVIDIA V100 binary16 binary32 5 Class IV
2018 Graphcore IPU1 binary16 binary32 - -
2020 Google TPUv4i bfloat16 binary32 4 Class IV
2020 Graphcore IPU2 binary16 binary32 - -
2020 NVIDIA A100 bfloat16,

binary16,
binary64,
TensorFloat-32

binary32/64 9 Class IV

2021 AMD MI250X bfloat16,
binary16,
binary32,
binary64

- 5 -

2021 GroqChip binary16 binary32 160 Class I or II
2022 NVIDIA H100 8-bit,

bfloat16,
binary16,
binary64,
TensorFloat-32

binary32, binary64 17 -

2022 Intel Ponte Vecchio bfloat16,
binary16,
binary64,
TensorFloat-32

- - -

2016-2022 Intel AMX binary16 binary32 17 Class III
2023 Tesla Dojo CFP8, bfloat16 binary32 8 Class IV
2024 NVIDIA Blackwell block 4/6/8-bit,

[...]
binary32, binary64 - -
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Results on Class IV adders

Addition flr(x + y) is monotonic with round-to-nearest,
round-towards-zero, round-up, and round-down.

Addition of three operands flr(flr(x1 + x2) + x3) is non-monotonic
with round-to-nearest, round-toward-zero and round-down, except if
rounded to starting precision fl(flr(flr(x1 + x2) + x3)).

Proof:

Three consecutive positive FP numbers a, b (a power of 2), c .

a < b < c , ε = c−b
2 .

flr(b + ε) = b and flr(flr(b + ε) + ε) = b with RN, RD, RZ.

flr(a+ ε) = b (precision grows).

flr(flr(a+ ε) + ε) > b due to precision growth in the first add.

fl(flr(flr(a+ ε) + ε)): OK.
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Results on Class IV adders

Main result

Summation flr(· · · flr(x1 + x2) + · · · ) + xn), with xi ∈ R and n ≥ 4 is not
monotonic with round-to-nearest, round-towards-zero, and
round-toward-negative (xi > 0) or round-toward-positive (xi < 0), with
and without the final rounding to the starting precision.
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Proof

Three consecutive positive FP numbers a, b (a power of 2), c .

a < b < c , ε = c−b
2 .

With RN, flr(b + ε) = b for ε ≤ (c − b)/2, while in precision-(p + 1)
arithmetic flr(b + ε) = b for ε ≤ (c − b)/4.

Also, in precision-p arithmetic flr(a+ (c − b)/2) = b.

Consider flr(flr(flr(x + ε) + ε) + ε) in two cases:

1 x = b, then flr(flr(flr(b + ε) + ε) + ε) = b (all in precision-p).
2 x = a, then the first addition flr(a+ ε) = b (and precision increases

to p + 1 since b is a power of two).
the second addition flr(b + ε) = b + ε (in precision p + 1);
the third addition flr(b + ε+ ε) = c (in precision p + 1).

When x = b, sum evaluates to b, but when x = a < b, sum evaluates to
c > b. Final rounding to p does not change the results. □
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Custom precision simulators

Various packages available: chop, FLOATP, QPyTorch.

Usual approach is to perform ops in binary32/64 HW.

Round down to sub-32-bit precision: careful with double rounding.

We believe ours is most customizable and fastest: CPFloat [Fasi &
Mikaitis, 2023].

Can be used in MATLAB, Octave or C.
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Example with CPFloat in MATLAB/Octave

>> options.format = 'binary16';
>> [~,options] = cpfloat(0, options)

options =

struct with fields:

format: 'binary16'
params: [11 15]

subnormal: 1

round: 5

flip: 0

p: 0.5000

explim: 1

>> cpfloat(pi, options)

ans =

3.1406

>> options.params(1) = options.params(1) + 1;

>> cpfloat(pi, options)

ans =

3.1426
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Numerical experiments

We simulated Class IV multi-term adders with MATLAB, using the
custom precision simulator CPFloat [Fasi and Mikaitis, 2023].

Compute
fl(· · · fl(x1 + x2) + · · · ) + xn)

and
fl(flr(· · · flr(x1 + x2) + · · · ) + xn))

in three small floating-point systems: p = 3, emax = 3; p = 4,
emax = 3; and p = 5, emax = 4.

Set all xi = 0.25 and then vary x1 by changing it to the adjacent
floating-point value towards +∞ until all representable values are
covered.

Each time we change x1 we sum the values xi with IEEE 754 ops and
with the Class IV adder.

Relative error compared with the same sum performed in binary64
arithmetic.
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Numerical experiments with p = 3, emax = 3
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Numerical experiments with p = 4, emax = 3
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Numerical experiments with p = 5, emax = 4
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Impact of addend ordering on accuracy (binary16)
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Example issues: square root

We may get into trouble if we use multi-term adders in computing√∑n
i ai −

∑k
j bj when we know

∑n
i ai ≥

∑k
j bj .

For example in binary32, with a = [1, 1, 1, 1, 1, 1, 1, 16777216],
b = [1, 1, 1, 1, 1, 1, 1, 16777214]

With a 8-term Class IV adder we get
√
−4 = NaN.

With IEEE 754 addition we can sort and avoid the NaN.
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Example issues: internval arithmetic

Compute interval of sum through the change of rounding modes (RD and
RU) in Class IV multi-term adder.

Take a = [16777216, 1, 1, 1, 1, 1, 1, 1], b = [16777214, 1, 1, 1, 1, 1, 1, 1]

Interval of the sum of a is [16777216, 16777230].

Interval of the sum of b is [16777220, 16777222].

Decreasing one addend, the lower end of interval shifts up; interval
narrows due to precision growth.
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Classification of adders and their properties

Class I/II (Kulisch, Tenca): associative, monotonic.

Class III (chain of IEEE 754 two-term adders): not associative,
monotonic.

Class IV (limited precision, no intermediate normalization):
associative, not monotonic
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Discussion

Monotonicity important in bisection [Demmel, Dhilon, Ren, 1995];
solving quadratic equations [Higham, 2002]; mathematical functions.

IEEE 754-2019 recommends reduction operations, but does not
specify details; may consider revisiting for IEEE 754-2029.

Paper

M. Mikaitis. Monotonicity of Multi-Term Floating-Point Adders. IEEE

Trans. Comput. Feb. 2024. Early view.
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