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IEEE 754: Most important standard in computing history

Standard for binary and decimal fixed-precision arithmetic

Defines subsets of reals, their encoding in memory, conversion and arithmetic behaviour,
rounding, exception handling, and more. Concept of correct rounding.

Released in 1985, revised in

2008

2019 (active)

2029 (work in progress)

We are participating in IEEE 754-2029

Fortnightly meetings, discussion on the mailing list, thoroughly reading the 2019 revision
and raising issues.

Working group: international, many members work in computing industry.
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Floating-point arithmetic, main tools

A floating-point system F ⊂ R is described with β, t, emin, emax with elements

x = ±m × βe−t+1.

Virtually all computers have β = 2 (binary FP).

Here t is precision, emin ≤ e ≤ emax an exponent, m ≤ βt − 1 a significand (m, t, e ∈ Z).

Toy FP system

Below: the positive numbers in F (β = 2, t = 3, emin = −2, emax = 3).
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Floating-point arithmetic, main tools

Standard model [Higham, 2002]

Given x , y ∈ R that lie in the range of F it can be shown that

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u,

where u = 2−t , op ∈ {+,−,×,÷} and round-to-nearest mode.
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Building error bounds: small example

Rounding errors δ accumulate. For example, consider computing s = x1y1 + x2y2 + x3y3.

We compute ŝ with

ŝ =
((

x1y1(1 + δ1) + x2y2(1 + δ2)
)
(1 + δ3) + x3y3(1 + δ4)

)
(1 + δ5)

= x1y1(1 + δ1)(1 + δ3)(1 + δ5) + x2y2(1 + δ2)(1 + δ3)(1 + δ5) + x3y3(1 + δ4)(1 + δ5).

Therefore we compute a solution for the inputs perturbed at most by
∏n

i=1(1 + δi ).

Worst case backward error bound∏n
i=1(1 + δi ) = 1 + θn, |θn| ≤ γn, with γn = nu

1−nu and assuming nu < 1.

To simplify, we say worst-case error growth is O(nu).
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IEEE floating-point standardisation work: IEEE P3109

Standard for Arithmetic Formats for Machine Learning

New IEEE standard for computer arithmetic for AI is in progress. We are also actively
participating in it: meeting fortnightly.

Standardises:

Small floating-point subsets of reals,

encoding in 8-bit words,

rounding behaviour,

arithmetic operations needed in AI workloads,

conversion to/from 754,

exception handling.

Interim report available: http://bit.ly/42gPWcy
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IEEE floating-point standardisation work: IEEE P3109

Current draft outlines these key aspects:

Defines formats as binaryKpP with K = 8 and P = {1, 2, 3, 4, 5, 6, 7}.
No −0 (would have been 0x80)

Only one NaN (0x80) - note IEEE 754 numbers have many bit patterns for NaNs.

±∞ 0x7F and 0xFF.

Saturation mode: on overflow, return maximum finite value.

We can write down all numbers in a particular binary8pP set on one page. →
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IEEE P3109: format on one page (screenshot from the report)
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Open Compute Project Floating-Point Standards

Two standards by AMD, Arm, Google, Intel, Meta, and NVIDIA:

OCP 8-bit Floating Point Specification (released 2023)

OCP Microscaling Formats (MX) Specification (released 2023)

Key points:

8-, 6-, and 4-bit formats.

Retains −0.

NaNs are removed in some formats, to increase the range.

Scaled floating-point: common scale factor (2X ) for vectors of FP or integer numbers.

Key takeaway

OCP is different from IEEE P3109 in terms of defining subsets of reals (formats). For the
foreseeable future, two 8-bit standards will be driving the progress in hardware.
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Open Compute Project Floating-Point Standards (screenshot from the MX
standard)
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Using the TOP500 to anticipate where HPC hardware is going
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16-bit FP matrix arith. 19-bit FP
8-bit FP fast integer

Devices counted: P100, V100, A100, H100, MI210, MI250X, MI300X, Intel Data Center GPU,
from https://www.top500.org. With NVIDIA Blackwell 4/6-bit FP will appear.
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Research direction 1: Mixed-precision matrix multipliers

Architecture Input format Accumulation format

NVIDIA PTX ISA 8.5 fp8-E5M2 binary32
fp8-E4M3 binary32
binary16 binary16
binary16 binary32
bfloat16 binary32

19-bit FP binary32

AMD MI300 ISA fp8-E5M2 binary32
fp8-E4M3 binary32
binary16 binary32
bfloat16 binary32

19-bit FP binary32
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Research direction 1: Using low precision floating-point matrix arith.

Mary and Mikaitis [2024]; Fasi et al. [2023]; Higham et al. [2019].

Approach 1: Use 8-bit FP directly (scale to avoid overflow)

C = Λ−1
(
fl(ΛA)fl(BM)

)
M−1

Approach 2: Use multiple 8-bit FP directly

A(i) = fl

((
ΛA−

i−1∑
k=0

ukA(k)
)
/ui

)
and we approximate C = AB as

C ≈ Λ−1

( ∑
i+j<p

ui+jA(i)B(j)

)
M−1.
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Research direction 1: Using low precision floating-point matrix arith.

T. Mary and M. Mikaitis [2024].

Matrix multiply; data in [−1010,−10−10] ∪ [10−10, 1010].
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Research direction 1: Using low precision integer matrix arith.

A. Abdelfattah, J. Dongarra, M. Fasi, M. Mikaitis, and F. Tisseur, [2025, in prep.].

Ootomo et al. [2024] discovered algorithms for simulating FP matrix multiply with integer
matrix multiply. Small example split:
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Research direction 1: Using low precision integer matrix arith.

A. Abdelfattah, J. Dongarra, M. Fasi, M. Mikaitis, and F. Tisseur, [2025, in prep.].

We are developing theoretical and experimental analysis of the algorithms. Analysis is general,
to cover any future hardware changes.

Here s is the number of splits into 8-bit
chunks; colour denotes forward error of

(pow 10) |aTb−c|
|c| , where

a =

[
2−tx
1

]
, b =

[
2ty
1

]
,

and x , y are drawn from a uniform distri-
bution and c is a reference solution.

M. Mikaitis (Leeds) Leeds Mathematical Hardware and Software Lab March 2025 16 / 33



Research direction 1: Using low precision integer matrix arith.

Aij ,Bij = uniform(−0.5, 0.5)× eϕ×normal(0,1).
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Research direction 2: Stochastic rounding

With stochastic rounding (SR), we are not rounding a number to the same direction, but to
either direction with probability.

Given some x and FP neighbours ⌊x⌋, ⌈x⌉, we round to ⌈x⌉ with prob. p and ⌊x⌋ with p − 1.

Mode 1 SR (nearness): p = x−⌊x⌋
⌈x⌉−⌊x⌋ Mode 2 SR: p = 0.5

Mode 1

With Mode 1 SR we round x depending on its distances to the nearest two FP numbers,
cancelling out errors of different signs.
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Research direction 2: Rounding error analysis with SR

Standard error model for SR

With SR we replace u by 2u since it can round to the second nearest neighbour in F.

Rounding error analysis

Worst-case error analysis determines the upper bounds of errors, while probabilistic error
analysis describes more realistic bounds.

Worst-case b-err bound with RN: nu
1−nu .

Probabilistic bound with RN: λ
√
nu +O(u2) w. p. 1− 2ne−λ2/2. Requires an

assumption that δi are mean independent zero-mean quantities—do not always hold
[Connolly, Higham, Mary, 2021].

Wilkinson rule of thumb

O(
√
nu) error growth is a rule of thumb with RN, but always holds with SR.

M. Mikaitis (Leeds) Leeds Mathematical Hardware and Software Lab March 2025 19 / 33



Research direction 2: Example error growth with SR in mat-vec prod

Backward error in y = Ax where A ∈ R100×n with entries from uniform dist over [0, 10−3] and

x ∈ Rn over [0, 1]: maxi
|ŷ−y |i
(|A||x |)i .
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Research direction 2: Consider implementation of SR

Take mt to be a high precision unrounded significand from an operation.

Take t to be source precision and k the precision of random numbers.
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Research direction 2: Implementation of SR

E.-M. El Arar et al. [2024]: we derived a new bound O(
√
nup + nup+r )

Error when adding n random values in (0, 1) in 16-bit floating point:
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Research direction 3: Determining numerical features by testing hardware

Given a small matrix multiplier not necessarily using IEEE 754 +,×:

We are building theory and tools that allow to report the internal precision, order of
computations, rounding mode, and more. Fasi, Higham, Pranesh, Mikaitis [2021].

We reported bit level differences between NVIDIA V100 and A100, not documented.
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Research direction 3: Mixed-precision matrix multipliers on GPUs

a11 × b11 + a12 × b21 + a13 × b31 + a14 × b41

We are used to normalize-round after each op.

In hardware it is not necessarily the case.

Normalize at the end? Savings in circuit area and latency.

Round or drop bits? Savings.

Accumulate in higher precision? Can do with 1-bit granularity.
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Research direction 3: Why test the mathematical hardware

IEEE 754 does not define strict rules on dot products:

“Implementations may associate in any order or evaluate in any wider format.”

Implementations might differ.

Not documented in detail by vendors.

Massive throughput means we are using MMAs in other areas that traditionally use
standardized FP.

Can be said we are back to pre-IEEE-754 with mixed-precision.

Eventually need to standardise (IEEE working group P3109).

For now we create tests that determine features and differences between architectures.
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Research direction 3: how do we test mathematical hardware

Technique goes back to software called Paranoia from the 1980s.

MMAs more complicated than +,×,÷

Find floating-point inputs that will yield different outputs on different hardware.

Input Hardware MMA
Model 1

2
3

· · ·
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Research direction 3: our main findings from testing

a11 × b11 + a12 × b21 + a13 × b31 + a14 × b41

1-bit difference in accumulators of V100 and T4/A100.

Normalization at the end, not at intermediate adds.

Rounding is not to nearest.

Monotonicity: increase one input, do not change order, dot product decreases. See [Mikaitis,
2024].

No fixed order.
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Research direction 3: currently a manual process

Consider determining the rounding direction:

�

�

�

�

RN or RURZ or RD

RZ or RURN or RD

+∞−∞

RURN, RZ
or RD

RN, RZ
or RURDd)

c)

b)

a)
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Research direction 3: Looking for numerical features by testing hardware

3-year EPSRC-funded project 2025–2028.

Collaboration with Argonne National Lab and Intel (US).

WP4: Develop automated open-source software to report hardware features.
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Research tool development: custom precision simulators

Various packages available: chop, FLOATP, QPyTorch.

Usual approach is to perform ops in binary32/64 HW.

Round down to sub-32-bit precision: careful with double rounding.

We believe ours is most customizable and fastest: CPFloat [Fasi & Mikaitis, 2023].

Can be used in MATLAB, Octave or C.
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Research tool development: example with CPFloat in MATLAB/Octave

>> options.format = 'binary16';
>> [~,options] = cpfloat(0, options)

options = struct with fields:

format: 'binary16'
params: [11 15]

subnormal: 1

round: 5

flip: 0

p: 0.5000

explim: 1

>> cpfloat(pi, options)

ans =

3.1406

>> options.params(1) = options.params(1) + 1;

>> cpfloat(pi, options)

ans =

3.1426
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Summary

We are building theory and tools to explain computer arithmetic hardware and analyse
algorithms.

People have been there before: pre-IEEE-754 1985.

More complicated now: vector and matrix hardware.

Standardisation will impact future low-precision hardware.

Slides and more info at http://mmikaitis.github.io
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Leeds Mathematical Software and Hardware Lab

Informal group, within Scientific Computation group, in the School of Computing, Univ. Leeds.

Massimiliano Fasi
Lecturer

Research and teaching

Mantas Mikaitis
Lecturer

Research and teaching

Focusing on computer arithmetic, numerical linear algebra, high-performance computing.

Working with IEEE P3109 and IEEE 754-2029.

Serving on PC committees of ARITH.

Planning MSc module on computer arithmetic.

PhD studentships available.
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