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What do we mean by computer arithmetic?

1 Pick a subset of real numbers (discretize part of the real number line), F ⊂ R.
2 Provide a mapping from F to a set of strings of bits.

3 Provide hardware or software to approximate basic operations: +,−,÷,
√
,×, . . .

(inputs/outputs strings of bits)

4 Provide hardware or software to approximate mathematical functions: exp, log, sin, cos,
and others.

5 Provide hardware or software to approximate inner product and matrix multiplication.

6 Provide rounding modes.
7 Determine accuracy of operations and algorithms:

testing (no guarantees unless exhaustive), or
error analysis (bounds developed on paper).
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IEEE 754: Most important standard in computing history

Standard for binary and decimal fixed-precision arithmetic

Defines subsets of reals, their encoding in memory, conversion and arithmetic behaviour,
rounding, exception handling, and more. Concept of correct rounding.

Released in 1985, revised in

2008

2019 (active)

2029 (work in progress)

Leeds is participating in IEEE 754-2029

Fortnightly meetings, discussion on the mailing list, thoroughly reading the 2019 revision
and raising issues.

MF acting as secretary: archiving minutes, organising activities.

Working group: international, many members work in computing industry.
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Floating-point arithmetic, main tools

A floating-point system F ⊂ R is described with β, t, emin, emax with elements

x = ±m × βe−t+1.

Virtually all computers have β = 2 (binary FP).

Here t is precision, emin ≤ e ≤ emax an exponent, m ≤ βt − 1 a significand (m, t, e ∈ Z).

Standard model [Higham, 2002]

Given x , y ∈ R that lie in the range of F it can be shown that

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u,

where u = 2−t , op ∈ {+,−,×,÷} and round-to-nearest mode.
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Building error bounds: small example

Rounding errors δ accumulate. For example, consider computing s = x1y1 + x2y2 + x3y3.

We compute ŝ with

ŝ =
((

x1y1(1 + δ1) + x2y2(1 + δ2)
)
(1 + δ3) + x3y3(1 + δ4)

)
(1 + δ5)

= x1y1(1 + δ1)(1 + δ3)(1 + δ5) + x2y2(1 + δ2)(1 + δ3)(1 + δ5) + x3y3(1 + δ4)(1 + δ5).

Therefore we compute a solution for the inputs perturbed at most by
∏n

i=1(1 + δi ).

Worst case backward error bound∏n
i=1(1 + δi ) = 1 + θn, |θn| ≤ γn, with γn = nu

1−nu and assuming nu < 1.

To simplify, we say worst-case error growth is O(nu).
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Using the TOP500 to anticipate where HPC hardware is going
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16-bit FP matrix arith.
19-bit FP 8-bit FP
fast integer

Devices counted: P100, V100, A100, H100, MI210, MI250X, MI300X, Intel Data Center GPU,
from https://www.top500.org. With NVIDIA Blackwell 4/6-bit FP will appear.
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Research direction 1: Using low precision floating-point matrix arith.

Architecture Input format Accumulation format

NVIDIA PTX ISA 8.5 fp8-E5M2 binary32
fp8-E4M3 binary32
binary16 binary16
binary16 binary32
bfloat16 binary32

19-bit FP binary32

AMD MI300 ISA fp8-E5M2 binary32
fp8-E4M3 binary32
binary16 binary32
bfloat16 binary32

19-bit FP binary32

M. Mikaitis (Leeds) Leeds Mathematical Hardware and Software Lab January 2025 7 / 21



Research direction 1: Using low precision floating-point matrix arith.

Mary and Mikaitis [2024]; Fasi et al. [2023]; Higham et al. [2019].

Approach 1: Use 8-bit FP directly (scale to avoid overflow)

C = Λ−1
(
fl(ΛA)fl(BM)

)
M−1

Approach 2: Use multiple 8-bit FP directly

A(i) = fl

((
ΛA−

i−1∑
k=0

ukA(k)
)
/ui

)
and we approximate C = AB as

C ≈ Λ−1

( ∑
i+j<p

ui+jA(i)B(j)

)
M−1.
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Research direction 1: Using low precision floating-point matrix arith.

Collaboration with T. Mary (Sorbonne Univ.) [2024].

Matrix multiply; data in [−1010,−10−10] ∪ [10−10, 1010].
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Research direction 1: Using low precision integer matrix arith.

Collabor. with J. Dongarra, A. Abdelfattah (Univ. Tennessee), F. Tisseur (Manchester) [2025].

Ootomo et al. [2024] discovered algorithms for simulating FP matrix multiply with integer
matrix multiply. Small example split:
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Research direction 1: Using low precision integer matrix arith.

Collabor. with J. Dongarra, A. Abdelfattah (Univ. Tennessee), F. Tisseur (Manchester) [2025].

We are developing theoretical and experimental analysis of the algorithms. Analysis is general,
to cover any future hardware changes.

Here s is the number of splits into 8-bit
chunks; colour denotes forward error of

(pow 10) |aTb−c|
|c| , where

a =

[
2−tx
1

]
, b =

[
2ty
1

]
,

and x , y are drawn from a uniform distri-
bution and c is a reference solution.
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Research direction 1: Using low precision integer matrix arith.

Aij ,Bij = uniform(−0.5, 0.5)× eϕ×normal(0,1).
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Research direction 2: Stochastic rounding

With stochastic rounding (SR), we are not rounding a number to the same direction, but to
either direction with probability.

Given some x and FP neighbours ⌊x⌋, ⌈x⌉, we round to ⌈x⌉ with prob. p and ⌊x⌋ with p − 1.

Mode 1 SR (nearness): p = x−⌊x⌋
⌈x⌉−⌊x⌋ Mode 2 SR: p = 0.5

Mode 1

With Mode 1 SR we round x depending on its distances to the nearest two FP numbers,
cancelling out errors of different signs.
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Research direction 2: Rounding error analysis with SR

Standard error model for SR

With SR we replace u by 2u since it can round to the second nearest neighbour in F.

Rounding error analysis

Worst-case error analysis determines the upper bounds of errors, while probabilistic error
analysis describes more realistic bounds.

Worst-case b-err bound with RN: nu
1−nu .

Probabilistic bound with RN: λ
√
nu +O(u2) w. p. 1− 2ne−λ2/2. Requires an

assumption that δi are mean independent zero-mean quantities—do not always hold
[Connolly, Higham, Mary, 2021].

Wilkinson rule of thumb

O(
√
nu) error growth is a rule of thumb with RN, but always holds with SR.
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Research direction 2: Example error growth with SR in mat-vec prod

Backward error in y = Ax where A ∈ R100×n with entries from uniform dist over [0, 10−3] and

x ∈ Rn over [0, 1]: maxi
|ŷ−y |i
(|A||x |)i .
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Research direction 2: Consider implementation of SR

Take mt to be a high precision unrounded significand from an operation.

Take t to be source precision and k the precision of random numbers.
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Research direction 2: Implementation of SR

E.-M. El Arar et al. [2024]: we derived a new bound O(
√
nup + nup+r )

Error when adding n random values in (0, 1) in 16-bit floating point:
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IEEE floating-point standardisation work: IEEE P3109

Standard for Arithmetic Formats for Machine Learning

New IEEE standard for computer arithmetic for AI is in progress. We are also actively
participating in it: meeting fortnightly.

Standardises:

Small floating-point subsets of reals (no −0, one NaN),

encoding in 8-bit words,

rounding behaviour,

arithmetic operations needed in AI workloads,

conversion to/from 754,

exception handling.

Interim report available: http://bit.ly/42gPWcy
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Research direction 3: Determining numerical features by testing hardware

Given a small matrix multiplier not necessarily using IEEE 754 +,×:

We are building theory and tools that allow to report the internal precision, order of
computations, rounding mode, and more. Fasi, Higham, Pranesh, Mikaitis [2021].

We reported bit level differences between NVIDIA V100 and A100, not documented.
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Research direction 3: Looking for numerical features by testing hardware

3-year EPSRC-funded project to start in 2025.

Collaboration with Argonne National Lab and Intel (US).

WP4: Develop automated open-source software to report hardware features.
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Summary

We are building theory and tools to explain computer arithmetic hardware and analyse
algorithms.

People have been there before: pre-IEEE-754 1985.

More complicated now: vector and matrix hardware.

Standardisation will impact future low-precision hardware.

Slides and more info at http://mmikaitis.github.io
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