
Accurate Matrix Multiplication with Low- and
Mixed-Precision Matrix Multiply-Add Units

Determining Non-Standard Floating-Point Features and Developing
Efficient Algorithms

Mantas Mikaitis

School of Computer Science, University of Leeds, Leeds, UK

Intel VSSAD seminar (virtual)
21 August, 2025

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 1 / 48

Non-standard floating point on the TOP500 (June 2025)

20
16

20
18

20
20

20
22

20
24

0

100

200
#

m
ac
h
in
es

16-bit FP matrix arith. 19-bit FP
8-bit FP fast integer

Devices counted: P100, V100, A100, H100, MI210, MI250X, MI300X,
Intel Data Center GPU, from https://www.top500.org.

NVIDIA Blackwell throughputs (FLOPS)
fp8 (9× 1015) fp16 (4.5× 1015) fp64 (0.04× 1015).

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 2 / 48

https://www.top500.org

The many floating-point formats

Format precision min pos. max pos. ulp(1)/2

binary64 (double) 53 2−1022 ∼ 1.798× 10308 2−53

binary32 (single) 24 2−126 ∼ 3.403× 1038 2−24

tf32 (19-bit) 11 2−126 ∼ 3.401× 1038 2−11

bfloat16 8 2−126 ∼ 3.389× 1038 2−8

binary16 (half) 11 2−14 65504 2−11

fp8-E4M3 4 2−6 448 2−4

fp8-E5M2 3 2−14 57344 2−3

fp6-E2M3 4 20 7.5 2−4

fp6-E3M2 3 2−2 28 2−3

fp4-E2M1 2 20 6 2−2

New standards in development

This may change quite significantly soon with the IEEE P3109 standard
for fl. point for machine learning almost complete.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 3 / 48

Mixed-precision matrix multipliers

Many low-precision formats are available as input formats to matrix
multiply-accumulate operation.

D = C + A × B,
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸
binary16 or
binary32

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸
binary16 or
binary32

+


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸
8/16/19-bit FP

×


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸
8/16/19-bit FP

Hardware matrix multipliers in mixed precision

Example above is 4× 4, but dimensions differ across architectures.

Reduction ops not standardised by IEEE 754: internal dot product
precision, rounding, subnormal support, sum order, carry bits,
monotonicity (see Clause 9.4 in 754-2019).

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 4 / 48

Part 1: Testing Features of Undocumented Matrix
Multipliers

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 5 / 48

1982: Paranoia software (Kahan in 1982, and then others
ported to Python, C, Fortran)

https://www.arithmazium.org lists the following questions Paranoia
tackles:

Is the arithmetic binary, octal, decimal, hexadecimal, or even
logarithmic?

How many significant digits in the radix 2, 8, 10, or 16 are
carried?

Are excess digits in a result truncated, rounded off, or
something else?

What is the largest finite number? The smallest nonzero number?
Do the extreme values have any unusual behaviors in arithmetic?

How accurate are
√
x and y x?

Does the arithmetic behave according to the then-emerging
IEEE floating point standard?

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 6 / 48

https://www.arithmazium.org

1982: Paranoia software, example test

def find_precision_big_B_to_nth(b):

"""Compute the number of B-digits in the arithmetic and

the power of B sufficient to have the ones place fall

off the right.

Args:

b: the global radix B, accepted as an argument

Returns:

precision: number of B digits in arithmetic

power of B such that the low-order digit is the B's place

"""

big_b = ONE

precision = ZERO

while True:

precision = precision + ONE

big_b = big_b * b

y = big_b + ONE

if y - big_b != ONE: break

return precision, big_b

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 7 / 48

GPU Paranoia [Hillesland and Lastra, 2004]

R300: 16-bit significand

NV30: 23-bit significand (perhaps 24)

Found guard bits in all operations

Found no correct rounding, and no “chopping”

ULP errors:

Used a special set of significands of [Shryer, 1981]:

1.100..., 1.010..., 1.001, ...

1.000..., 1.100..., 1.110, ...

0
M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 8 / 48

FPGA Paranoia [Tan, Boland, Constantinides, 2012]

Flopoco 0÷ 0 = ∞ (IEEE asks for NaN); Altera division not RN in
(1.5− 2−23)÷ (1− 2−23).

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 9 / 48

Now turn to matrix multiplier testing

To simplify, we look at any of the 16 inner products:

d = a1b1 × a2b2 × a3b3 × a4b4 + c

then either assume all 16 behave identically, or repeat tests.

Here a and b are vectors in one of low-prec. formats (4/6/16/19 bits),
and c, d are in high-prec. output format (32/64 bits).

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 10 / 48

NVIDIA V100 tests [Hickmann and Bradford, 2019]

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 11 / 48

NVIDIA V100 tests [Hickmann and Bradford, 2019]

d = a1b1 + a2b2 + a3b3 + a4b4 + c

1 Take a1 = b1 = a2 = 215, b2 = −215, a3 = 2−14, b3 = 1.

2 After products, this results in summation 230 − 230 + 2−14.

3 Then run all permutations of inputs.
4 Internal rounding points should produce 0.0 and 2−14 across all

permutations:
1 f l(f l(230 − 230) + 2−14) = 2−14

2 f l(230 + fl(−230 + 2−14)) = 0

5 Authors found 0 returned in all permut. (designs a, b, c ruled out)

Why 230 and 2−14?

Need big and small numbers to cause rounding. Also, 216 is not
representable in binary16, so 215 × 215 is largest power-of-two product.
Additionally, 2−14 is the smallest normalised binary16.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 12 / 48

NVIDIA V100 tests [Hickmann and Bradford, 2019]

What is the internal accumulator’s precision?

d = a1b1 + a2b2 + a3b3 + a4b4 + c

1 Take a1 = b1 = a2 = 215, b2 = −215, a3 = 2X , b3 = 2Y .

2 Vary X and Y such that X + Y = −28...30 in that order.

3 When 230 − 230 + 2X+Y ̸= 0, internal precision of accum.
30− (X + Y) + 1.

4 Authors found internal precision 24.

[Fasi et al. 2021] subsequently applied similar testing to NVIDIA A100,
finding 25-bit precision.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 13 / 48

NVIDIA V100 tests [Hickmann and Bradford, 2019]

Are intermediate additions in the accumulator’s precision rounded?

d = a1b1 + a2b2 + a3b3 + a4b4 + c

1 Take a1 = b1 = 1, a2 = 2−10, b2 = 2−13, a3 = 2−10, b3 = 2−14.

2 Results in summation 1 + 2−23 + 2−24.

3 Negative version: −1− 2−23 − 2−24.

4 2−24 “falls off” the 24-bit precision.

5 Tests returned ±(1 + 2−23), meaning that 2−24 was not used for
rounding up.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 14 / 48

Testing NVIDIA Turing and Ampere [Fasi et al. 2021]

d = a1b1 + a2b2 + a3b3 + a4b4 + c

Testing the number of carry bits is at least two in the internal accumulator.

Take c = 1.00000000000000000000011,

and set the rest of inputs to produce the addends

1.00000000000000000000000
1.00000000000000000000000
1.00000000000000000000000
0.00000000000000000000001

and then permute the placement of the smallest input—we need it to be
added last.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 15 / 48

Testing NVIDIA Turing and Ampere [Fasi et al. 2021]

001.00000000000000000000011+ (24 bits, starting point for binary32)
001.00000000000000000000000 =
010.00000000000000000000011+ (25 bits)
001.00000000000000000000000 =
011.00000000000000000000011+
001.00000000000000000000000 =
100.00000000000000000000011+ (26 bits)
000.00000000000000000000001 =
100.00000000000000000000100
001.00000000000000000000001 (final normalise)

If the carry bits were not present, the bottom two 1’s would have
disappeared in the intermediate calculations since we would shift right to
avoid overflows.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 16 / 48

Testing NVIDIA Turing and Ampere [Fasi et al. 2021]

As part of this work we discovered a monotonicity test, a property that
breaks when computing with denormalised values.

On the V100, set inputs in

d = a1b1 + a2b2 + a3b3 + a4b4 + c

such that the computation is

d = 2−24 + 2−24 + 2−24 + 2−24 + c

then with

c = 1 we get d = 1,

c = 1− 2−24 we get d = 1 + 2−23.

The ordering of inputs is unchanged. See [Mikaitis, 2024] for detail.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 17 / 48

AMD matrix engine testing [Li et al. 2024]

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 18 / 48

New 3-year project on this topic

Project goals (we started about 4 months ago):

Generalise test expressions through input and output format
precisions (see talk by Faizan Khattak at IEEE HPEC 2025).

Check our tests on a selection of simulated models of dot products.

Design a testsuite that seamlessly works on a variety of architectures
and programming languages: Intel, NVIDIA, AMD, ...

Release a website library of hardware test results.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 19 / 48

New 3-year project on this topic

High-level algorithm
1 Develop feature test expressions generalised by pin, pout .
2 Develop N models of inner product, with a variety of features.
3 Deploy tests on the N models, for common input-output format

combinations.
4 Deploy tests on NVIDIA, AMD, Intel hardware, to determine which

model they follow.
5 If HW behaviour not consistent with any model, add more models

and repeat.

The model of dot product unit

We are currently determining the model for:

d = a1b1 + a2b2 + a3b3 + a4b4 + · · ·+ anbn + c

Rounding points and modes, input/output/internal precision, normalisation
points? Need to cover all reasonable hardware implementations.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 20 / 48

Part 2: Algorithms for Simulating High-Accuracy Matrix
Multiplication via Low Precision

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 21 / 48

V100 multi-word matrix multiply [Markidis et al. 2018]

Take RA = Afp32 − Afp16 and RB = Bfp32 − Bfp16

and then

Afp32Bfp32 ≈ (Afp16 + RA)(Bfp16 + RB) =
Afp16Bfp16 + Afp16RB + RABfp16 + RARB

Use four invocations of fp16-fp32 tensor core.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 22 / 48

V100 multi-word matrix multiply [Mukunoki et al. 2020]

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 23 / 48

Multi-word matrix multiply with 8-bit tensor cores [Mary
and Mikaitis, 2025]

D = C + A × B,
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸
binary16 or
binary32

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸
binary16 or
binary32

+


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

8-bit FP

×


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

8-bit FP

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 24 / 48

Multi-word matrix multiply with 8-bit tensor cores [Mary
and Mikaitis, 2025]

Goal: Given A and B, matrices in, for example, binary64, multiply
them accurately using mixed-precision MMAs.

1 Scale input matrices A and B.

2 Round input matrices to the input format.

3 Multiply scaled and rounded A and B in the accumulation format.

4 Scale the output matrix.

C = Λ−1
(
fl(ΛA)fl(BM)

)
M−1

Λ and M are nonsingular diagonal matrices with diagonal coefficients
λi and µi respectively.

Scale coefficients λi and µi are powers of two.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 25 / 48

Multi-word matrix multiply with 8-bit tensor cores [Mary
and Mikaitis, 2025]

Let θ be the maximum value we can afford in the scaled A and B.

Scaling by powers of two means the maximum entry per row of A or
column of B is in (θ/2, θ].

We should maximise θ to reduce number of underflows, but at the same
time remove possibility of overflow.

Choose:

θ = min(fmax,
√

Fmax/n).

which avoids overflow in the input and in the accumulation of n products.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 26 / 48

Single-word algorithm: an example

Take A ∈ R4×4 and B ∈ R4×4.

Set fp8-E4M3 as the input format with fmax = 448.

Set binary16 as the accumulation format with Fmax = 65504.

No subnormal floating-point numbers.

This gives min(448,
√

65504/4) = min(448, 127.9687) ≈ 127 = θ.

Scaling factors

In this case before rounding matrices to the input format we need to scale
them such that 127 is the maximum value that appears.

127 is lower than fmax = 448 - no input format overflows.

127× 127 = 16129 and if we accumulate four such products we get
64616 < Fmax = 65504. No accumulation format overflows.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 27 / 48

Single-word algorithm: an example

Take

A =


500 1 1 2−6

128 128 128 128
1 1 1 1
1 1 1 1

 ,B =


1 128 1 1
1 128 1 1
1 128 1 1
1 128 1 1

 .

We have

AB =


502.015625 64258 502.015625 502.015625

512 65536 512 512
4 512 4 4
4 512 4 4

 .

Overflows in the above example if no scaling is applied

(Input) 500 > fmax = 448 and (output) 65536 > Fmax = 65504.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 28 / 48

Single-word algorithm: an example

C = Λ−1
(
fl(ΛA)fl(BM)

)
M−1, θ = 127

Step 1: Scale A and B.

ΛA =


2−2 0 0 0
0 2−1 0 0
0 0 1 0
0 0 0 1



500 1 1 2−6

128 128 128 128
1 1 1 1
1 1 1 1

 =


125 2−2 2−2 2−8

64 64 64 64
1 1 1 1
1 1 1 1



BM =


1 128 1 1
1 128 1 1
1 128 1 1
1 128 1 1



1 0 0 0
0 2−1 0 0
0 0 1 0
0 0 0 1

 =


1 64 1 1
1 64 1 1
1 64 1 1
1 64 1 1


How the scale coefficients are calculated

For example, take the first row of A. The largest value is 500 and we need
to get it below θ = 127. λ1 = 2⌊log2(127/500)⌋ = 2−2.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 29 / 48

Single-word algorithm: an example

C = Λ−1
(
fl(ΛA)fl(BM)

)
M−1

Step 2: Round to the input format fp8-E4M3 (fmin = 2−6).

f l(ΛA) = fl



125 2−2 2−2 2−8

64 64 64 64
1 1 1 1
1 1 1 1


 =


125 2−2 2−2 0
64 64 64 64
1 1 1 1
1 1 1 1



f l(BM) = fl



1 64 1 1
1 64 1 1
1 64 1 1
1 64 1 1


 =


1 64 1 1
1 64 1 1
1 64 1 1
1 64 1 1


Underflow in the above example

Notice that since subnormals are off, numbers ≤ fmin/2 will round to zero,
causing underflow. This happened to ΛA(1, 4) = 2−8, which resulted from
scaling the first row of A, where originally A(1, 4) = 2−6.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 30 / 48

Single-word algorithm: an example

C = Λ−1
(
fl(ΛA)fl(BM)

)
M−1

Step 3: Perform matrix multiply in the accumulation format binary16
(T = 11, Fmax = 65504).

125 2−2 2−2 0
64 64 64 64
1 1 1 1
1 1 1 1



1 64 1 1
1 64 1 1
1 64 1 1
1 64 1 1

 =


125.5 8032 125.5 125.5
256 16384 256 256
4 256 4 4
4 256 4 4



M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 31 / 48

Single-word algorithm: an example

C = Λ−1
(
fl(ΛA)fl(BM)

)
M−1

Step 4: Undo the scaling.
4 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1



125.5 8032 125.5 125.5
256 16384 256 256
4 256 4 4
4 256 4 4



1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

 =


502 64256 502 502
512 65536 512 512
4 512 4 4
4 512 4 4



M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 32 / 48

Single-word algorithm: an example

C = Λ−1
(
fl(ΛA)fl(BM)

)
M−1

Comparison. Our result computed with mixed-precision MMA:

AB ≈


502 64256 502 502
512 65536 512 512
4 512 4 4
4 512 4 4


And the exact result

AB =


502.015625 64258 502.015625 502.015625

512 65536 512 512
4 512 4 4
4 512 4 4


M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 33 / 48

Double-word algorithm: an example

Step 2: Round to the input format, in double-word representation.

We will round each ΛA and BM to two fp8-E4M3 matrices instead of one.

Compute the first word (first of the two matrices):

A(0) = fl(ΛA) = fl



125 2−2 2−2 2−8

64 64 64 64
1 1 1 1
1 1 1 1


 =


125 2−2 2−2 0
64 64 64 64
1 1 1 1
1 1 1 1



B(0) = fl(BM) = fl



1 64 1 1
1 64 1 1
1 64 1 1
1 64 1 1


 =


1 64 1 1
1 64 1 1
1 64 1 1
1 64 1 1



M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 34 / 48

Double-word algorithm: an example

Step 2: Round to the input format fp8-E4M3, in double-word
representation.

Compute the second word (rounding/underflow error in the first step):

A(1) = fl((ΛA− A(0))/u1) =

fl




125 2−2 2−2 2−8

64 64 64 64
1 1 1 1
1 1 1 1

−


125 2−2 2−2 0
64 64 64 64
1 1 1 1
1 1 1 1


 ./2−4

 =


0 0 0 2−4

0 0 0 0
0 0 0 0
0 0 0 0


Since B(0) = BM,B(1) = zeros(4, 4).

Extra scaling

Notice the division by u1 = 2−4 before rounding, which is done to reduce
underflows in the input format. In general, the multi-word split is

A(i) = fl

((
ΛA−

∑i−1
k=0 u

kA(k)
)
/ui

)
.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 35 / 48

Double-word algorithm: an example

Step 3: Perform matrix products and add them in the accumulation
format binary16.

p-word case

After splitting ΛA and BM into A(0), . . . ,A(p−1) and B(0), . . . ,B(p−1),
approximate matrix multiply by p(p + 1)/2 products

C ≈ Λ−1

(∑
i+j<p

ui+jA(i)B(j)

)
M−1.

In our double-word case

A(0)B(0) + uA(1)B(0) =
125 2−2 2−2 0
64 64 64 64
1 1 1 1
1 1 1 1



1 64 1 1
1 64 1 1
1 64 1 1
1 64 1 1

+u


0 0 0 2−4

0 0 0 0
0 0 0 0
0 0 0 0



1 64 1 1
1 64 1 1
1 64 1 1
1 64 1 1


M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 36 / 48

Double-word algorithm: an example

A(0)B(0) + uA(1)B(0) =
125.5 8032 125.5 125.5
256 16384 256 256
4 256 4 4
4 256 4 4

+


2−8 0.25 2−8 2−8

0 0 0 0
0 0 0 0
0 0 0 0

 =


125.50390625 8032.25 125.50390625 125.50390625

256 16384 256 256
4 256 4 4
4 256 4 4



M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 37 / 48

Double-word algorithm: an example

C ≈ Λ−1

(∑
i+j<p

ui+jA(i)B(j)

)
M−1.

Step 4: Undo the scaling.


4 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1



125.50390625 8032.25 125.50390625 125.50390625

256 16384 256 256
4 256 4 4
4 256 4 4



1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

 =


502.015625 64258 502.015625 502.015625

512 65536 512 512
4 512 4 4
4 512 4 4

 = AB.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 38 / 48

Numerical experiments

We generate A ∈ R10×n and B ∈ Rn×10 and vary n.

Elements in [−1010,−10−10] ∪ [10−10, 1010].

Measure the accuracy with ∥Ĉ−C∥∞
∥A∥∞∥B∥∞ where C is computed in binary64.

We check with subnormals on/off to detect any improvements due to
gradual underflow.

We also plot the variants of MMA without any range (exponent)
limitations.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 39 / 48

Numerical experiment

101 103 105

10−4

10−2

n

∥Ĉ
−
C
∥ ∞

∥A
∥ ∞

∥B
∥ ∞

fp8-E4M3 input
binary16 accumulation
subnormals off

101 103 105

10−4

10−2

n

fp8-E4M3 input
binary16 accumulation
subnormals on

p = 1 p = 1 unbounded range

p = 2 p = 2 unbounded range

p = 3 p = 3 unbounded range

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 40 / 48

Numerical experiment

101 103 105

10−7

10−4

10−1

n

∥Ĉ
−
C
∥ ∞

∥A
∥ ∞

∥B
∥ ∞

fp8-E4M3 input
binary32 accumulation
subnormals off

101 103 105

10−7

10−4

10−1

n

fp8-E4M3 input
binary32 accumulation
subnormals on

p = 1 p = 1 unbounded range

p = 2 p = 2 unbounded range

p = 3 p = 3 unbounded range

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 41 / 48

Utilising 8-bit integer tensor cores [Ootomo et al. 2024]

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 42 / 48

Our analysis of the method [Abdelfattah et al. 2025]

A =
[
1.5625 8 −3.6875

]
, B =

1.3828125−7.625
3.625


Example set up: FP precision 8 bits, 4 slices, integer: 3 bits and a sign

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 43 / 48

Our analysis of the method [Abdelfattah et al. 2025]

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 44 / 48

Our analysis of the method [Abdelfattah et al. 2025]

As a minimal example, we consider the computation of the inner product
aTb, where

a =

[
2−φx
1

]
, b =

[
2φy
1

]
, x , y ∼ N (0, 1). (1)

|ĉ − c |
|c |

, (2)

where

ĉ is computed with a variant of the Ozaki scheme with T = 31 and
t ′ = 7

c is a reference solution computed using the MATLAB Symbolic
Toolbox with 32 decimal digits of accuracy.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 45 / 48

Our analysis of the method [Abdelfattah et al. 2025]

The x-axis denotes the number of slices and the y-axis controls the
wideness of the gap between the min and max exponents.

LU factorisation

We did not discover need for large number of slices in many block-LU
factorisation experiments. 8 slices sufficient. See paper.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 46 / 48

Our analysis of the method [Abdelfattah et al. 2025]

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 47 / 48

Summary

Low-precision matrix multipliers are being used for general-purpose
computation.

We are

developing software to analyse the properties of such hardware, and
developing algorithms for high-accuracy computations with
low-precision units, and analysing them.

8-bit integer matrix multiply paper

A. bdelfattah, J. Dongarra, M. Fasi, M. Mikaitis, and F. Tisseur. Analysis
of Floating-Point Matrix Multiplication Computed via Integer Arithmetic .

Preprint, arXiv:2506.11277 [math.NA]. Jun. 2025.

Slides at http://mmikaitis.github.io/talks

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 48 / 48

http://mmikaitis.github.io/talks

References I

IEEE P3109 Working Group
Interim Report on Binary Floating-point Formats for Machine Learning

https://github.com/P3109/Public

K. Hillesland and A. Lastra
GPU Floating-Point Paranoia
Preprint.

X. Tan, D. Boland, and G. A. Constantinides
FPGA Paranoia: Testing Numerical Properties of FPGA Floating
Point IP-Cores
LNCS 7199. 2012.

B. Hickmann and D. Bradford
Experimental Analysis of Matrix Multiplication Functional Units
IEEE 26th Symposium on Computer Arithmetic. 2019.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 1 / 3

https://github.com/P3109/Public

References II

M. Fasi, N. J. Higham, M. Mikaitis, and S. Pranesh
Numerical Behavior of NVIDIA Tensor Cores
PeerJ Comp. Sci. Feb. 2021

M. Mikaitis
Monotonicity of Multi-Term Floating-Point Adders
IEEE Trans. Comput., 73. 2024.

X. Li, A. Li, B. Fang, K. Swirydowicz, I. Laguna, G. Gopalakrishnan
FTTN: Feature-Targeted Testing for Numerical Properties of NVIDIA
& AMD Matrix Accelerators newblock
Preprint. arXiv:2403.00232. 2024.

S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, J. S. Vetter
NVIDIA Tensor Core Programmability, Performance & Precision
IEEE International Parallel and Distributed Processing Symposium
Workshops. 2018.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 2 / 3

References III

D. Mukunoki, K. Ozaki, T. Ogita, T. Imamura
DGEMM Using Tensor Cores, and Its Accurate and Reproducible
Versions
LNCS 12151. 2020.

T. Mary and M. Mikaitis
Error analysis of matrix multiplication with narrow range floating-point
arithmetic
SIAM J. Sci. Comput., 47. 2025.

H. Ootomo, K. Ozaki and R. Yokota
DGEMM on integer matrix multiplication unit
Int. J. High Perf. Comput. Appl., 38. 2024.

M. Mikaitis (Leeds) Low-Precision Matrix Multipliers August 2025 3 / 3

	Appendix

