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SpiNNaker Neuromorphic Computer

• Neuromorphic – resembling brain interconnect
• SpiNNaker – A name of a million core machine 

developed in Manchester.
• Main goal: Simulate 1% of human brain.
• Made of ARM cores (Same cores that are in 

mobile phones)
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SpiNNaker Neuromorphic Computer

A board with 48 chips

720 boards (1200 boards in final stage for 1% of brain)

SpiNNaker chip

~4000
neurons



Main challenges of the SpiNNaker
project

Hardware:
• Processing millions of signals through million 

cores
• Power efficiency

Software:
• Biological plausibility – does it simulate accurate 

brain behavior?
• Real-Time running constraint – can ARM cores 

run simulation in real-time (Not slowed down).



What I intend to address in my PhD

Most of the time SpiNNaker spends on processing 
synapses. 

If an algorithm is learning, synapse strengths are 
changed which poses even more challenge.

I am interested in improving this using hardware and 
software optimizations in order to simulate larger

neural networks in real-time.
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Learning on SpiNNaker-1

• Learning in brain is called synaptic plasticity.
• Strengths of synapses are changing so that 

some neurons learn to fire a signal (spike) 
more often or less often.

• On SpiNNaker, a mathematical learning rule can 
be injected to describe synaptic change.

• Most rules involve analyzing a history of spikes 
of two neurons connected by a synapse –
slow, memory-heavy process.



• Each ARM core gets assigned a set (of some 
controlled size) of neurons that it is responsible for.

• When one neuron spikes, ARM core has to receive 
or send out a spike.

Population 1 Population 2

Connections

ARM
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Simulating plastic neural networks on 
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Population 1 Population 2

Connections

Simulating plastic neural networks on 
SpiNNker

ARM
Population 1

ARM
Population 2

Model
in PyNN

SpiNNaker

Plasticity of all connecting synapses is processed here



SpiNNaker-1 Chip Tear-Down

Single chip: 18 ARM968 cores
and 128MB shared SDRAM

32KB 
Instruction 

memory

64KB Data 
memory 
(DTCM)

ARM968 128MB shared 
memory



Simulating plastic neural networks on 
SpiNNker

32KB 
Instruction 

memory

64KB 
Data 

memory 
(DTCM)

ARM968

128MB shared 
memory

64KB is not enough, so
we have to use slower
shared memory.
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internal memory.

• (For each neuron (~255)) Separating packed 
data into different parameters using bit-masking 
and shifting instructions.

• Apply spike using mathematical model 
specified.

• Copying changed parameters back into 
SDRAM.



Running example – bit shifting and 
masking

P1 P4P2 P3

P1 = (data_in &0xFFFF0000) >> 16
P2 = (data_in & 0x00001E00) >> 9
P3 = (data_in & 0x00000100) >> 8
P4 = (data_in & 0x000000FF)

16bits 8bits4bits

1bitdata_in



Running example – bit shifting and 
masking

P1 P4P2 P3

P1 = (data_in &0xFFFF0000) >> 16
P2 = (data_in & 0x00001E00) >> 9
P3 = (data_in & 0x00000100) >> 8
P4 = (data_in & 0x000000FF)

16bits 8bits4bits

1bitdata_in

This is done hundreds of times per 1ms.
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Real-Time simulation constraint

Whole simulation time

1ms

Synapse processing (Spikes in 
queue are looked at)

Neuron processing 
(Membrane 

potential update)

Important rule: Run-time of synapse processing and neuron processing
functions combined, cannot overrun 1ms.
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Methods – Hardware accelerators

• Many neural algorithms require EXP, LOG and 
Random number generators.

• Currently all this is done in software.
• Create a hardware module that will do EXP and 

LOG functions without multiplication (Using 
shifting and adding instead).

• More possibilities exist, depending on specific 
problems of types of simulations.

• The main rule is that hardware is fixed, so we 
have to identify fixed parts of current and 
future simulation types.



Summary

• Synapse processing on SpiNNaker poses 
challenges for real-time simulations

• Software optimizations are not enough
• Proposal is to introduce hardware accelerators 

to speed up the process


