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Matrix multiply: testing the hardware to determine features.

What we get from today’s talk

Learn how the mathematical hardware of high-performance computers is
changing.
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Growth of low-precision arithmetics on the TOP500
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Number of machines in the TOP500 with sub-32-bit arithmetics and
matrix arithmetics over the years.

Devices included: NVIDIA P100/V100/A100/H100, AMD MI210/MI250X.
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Progression of throughput of arithmetics on the TOP500
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Growth of the performance of arithmetics in the NVIDIA devices.

NVIDIA P100 (2016), V100 (2017), A100 (2020), H100 (2022)
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GPUs in the TOP500

98% of the top 1 Frontier’s power comes from GPUs.
If you don’t use GPUs, go home!

J. Dongarra presenting in Manchester, 2022

(Not a direct quote)
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Short introduction to floating-point
arithmetic
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Floating-point (FP) number representation

A floating-point system F ⊂ R is described with β, t, emin, emax with
elements

x = ±m × βe−t+1.

Virtually all computers have β = 2 (binary FP).

Here t is precision, emin ≤ e ≤ emax an exponent, m ≤ βt − 1 a significand
(m, t, e, m ∈ Z).

Toy FP system

Below: the positive numbers in F (β = 2, t = 3, emin = −2, emax = 3).
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Standard FP arithmetic: IEEE 754

The standard established to achieve consistency between
implementations.

First appeared 1985, updated 2008 and 2019.

Recommended number formats, operations, rounding modes,
mathematical functions, accuracy.

Most computers comply with this standard.

Formats with β = 2 from the standard. fmin—smallest normalized value,
smin—smallest denormalized value, fmax—largest value.

binary16 binary32 binary64

t 11 24 53
emin -14 -126 -1022
emax 15 127 1023
fmin 2−14 2−126 2−1022

smin 2−24 2−149 2−1074

fmax 215(2− 2−10) 2127(2− 2−23) 21023(2− 2−52)
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Floating-point format encoding

Numbers are held in memory using bits (convenient when β = 2).

Main IEEE 754 formats (double, single, half):

Some non-standard formats (but see IEEE P3109):
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IEEE 754 standard FP arithmetic: rounding

Round-to-nearest (RN) (ties even)

Round-toward-zero (RZ)

Round-down (RD)

Round-up (RU)

Use of rounding modes

RN is usually enabled by default. Directed modes used for special cases,
such as interval arithmetic.
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Stochastic rounding
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What is stochastic rounding

In stochastic rounding (SR), we are not rounding a number to the same
direction, but to either direction with probability.

Given some x and FP neighbours ⌊x⌋, ⌈x⌉, we round to ⌈x⌉ with prob. p
and ⌊x⌋ with p − 1.

Mode 1 SR: p = x−⌊x⌋
⌈x⌉−⌊x⌋ Mode 2 SR: p = 0.5

Mode 2

With Mode 1 SR we are rounding x depending on its distances to the
nearest two FP numbers, cancelling out errors of different signs.
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Mode 1 SR example

Consider rounding real numbers to integers. Round 0.25 indefinitely
and then consider running total error.

Note that with SR, probability of rounding up is 0.25 while rounding down
is 0.75.

With RN the total error from n roundings is −0.25n.

With SR, we can assume we round up on every 4th number. Error
growth:

↓ −0.25 ↓ −0.5 ↓ −0.75 ↑ 0

↑ 0.75 ↓ 0.5 ↓ 0.25 ↓ 0
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SR compared with RN

Operator fl(x)

By fl(x) we denote any rounding operator that maps a number x ∈ R to F .

With both rounding modes

If x ∈ F fl(x) = x .

(Sterbenz’s lemma) If x , y ∈ F with y/2 ≤ x ≤ 2y then
fl(x − y) = x − y .

Key differences of SR:

In general fl(|x |) ̸= |fl(x)| and fl(−x) ̸= −fl(x).

x ≤ y does not imply fl(x) ≤ fl(y) (non-monotonicity).

fl(n × fl(m/n)) = m does not always hold.

[Connolly, Higham, Mary, 2021].
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Early history of stochastic rounding

First mention by Forsythe [Forsythe, 1950]. Used in solving ODEs on early
computers. Early ideas for implementation (add random numbers to
round-off digits).

“Tests with I. B. M. equipment indicate that random round-off probably
eliminates a priori the peculiarities of round-off found by Huskey on the

ENIAC.” – Forsythe in 1949

First hardware implementation by Barnes [Barnes et al., 1951]. Decimal
8-digit arithmetic. Mode 2. Simpler to implement than RN.

A form of SR was explored by Hull & Swenson [Hull and Swenson, 1966],
used to test probabilistic error models.
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SR in machine learning

SR resurfaced in machine learning, in 1992 and then 2015.

[Höhfeld and Fahlman, 1992] used SR in training at very low
precisions, such as 13 bits.

Update w +∆w does not take effect as ∆w rounded to zero.
Clamping ∆w to min. val. causes non-convergence.
Round ∆w to the minimum representable value with prob.
proportional to ∆w .

[Gupta et al., 2015] used SR for training ML models with 16-bit
fixed-point arithmetic.
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SR in hardware

Commercial hardware that implements SR is specialized for machine
learning:

Graphcore IPU

Intel Loihi

Tesla Dojo

Amazon Trainium

IEEE P3109 are considering it (see J. Demmel’s talk at BIRS Workshop).
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Stagnation in FP summation

Stagnation in floating-point

In summation, stagnation occurs when fl(a+ b) = a for a ≫ b and b → 0.

Stagnation is well illustrated with a divergent series

∞∑
i=1

1/i = 1 + 1/2 + 1/3 · · ·

Here the addends are getting smaller while the total sum is increasing.

In limited precision arithmetic, the addends will eventually round off
and the series converge.
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Stagnation in FP summation

Below, stagnation/convergence points:

RN: when the sum stops changing.

SR: when the sum does not change for a significant number of
iterations.

Arithmetic Terms Sum

binary64 RN 248 34.122
binary32 RN 2097152 15.404
binary32 SR ∼ 50× 106 18.303
binary16 RN 513 7.0859
binary16 SR 3.5× 106 16.078
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Rounding error analysis

Given x ∈ R that lies in the range of F it can be shown that

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u,

where u = 2−t and op ∈ {+,−,×}.

Model of arithmetic

This is one of the standard models used to analyse rounding errors.
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Rounding error analysis

Rounding errors δ accumulate. For example, consider computing
s = x1y1 + x2y2 + x3y3.

We compute ŝ with

ŝ =
((

x1y1(1 + δ1) + x2y2(1 + δ2)
)
(1 + δ3) + x3y3(1 + δ4)

)
(1 + δ5)

= x1y1(1 + δ1)(1 + δ3)(1 + δ5) + x2y2(1 + δ2)(1 + δ3)(1 + δ5)

+ x3y3(1 + δ4)(1 + δ5).

Therefore we deal with a lot of terms of the form
∏n

i=1(1 + δi ).

Worst case backward error bound (exact result for perturbed inputs)∏n
i=1(1 + δi ) = 1 + θn, |θn| ≤ γn, with γn = nu

1−nu .

M. Mikaitis (Leeds) Low-Precision Hardware June 2023 21 / 39



Rounding error analysis with SR

Standard error model for SR

With SR we replace u by 2u since it can round to the second nearest
neighbour in F .

Rounding error analysis

Worst-case error analysis determines the upper bounds of errors, while
probabilistic error analysis describes more realistic bounds.

Worst-case b-err bound with RN: nu
1−nu .

Probabilistic bound with RN: λ
√
nu +O(u2) w. p. 1− 2e−λ2/2.

Requires an assumption that δn are mean independent zero-mean
quantities—often satisfied [Connolly, Higham, Mary, 2021].

Wilkinson rule of thumb
√
nu error growth is a rule of thumb with RN, but always holds with SR.
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Example error growth with SR in mat-vec prod

Backward error in y = Ax where A ∈ R100×n with entries from uniform
dist over [0, 10−3] and x ∈ Rn over [0, 1].
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Implementation of SR

Take mt to be a high precision unrounded significand from an operation.

Take t to be source precision and k the precision of random numbers.
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Non-random bits

M. Mikaitis (Leeds) Low-Precision Hardware June 2023 24 / 39



Applications: ODE solvers in fixed-point arithmetic

First experimental demonstration of the efectiveness of SR outside
machine learning [Hopkins, Mikaitis, Lester, Furber, 2020].

Solve ODEs that model biological neurons.

dV

dt
= 0.04V 2 + 5V + 140− U + I (t)

dU

dt
= a(bV − U)

If V ≥ 30mV (spike), V = c , U = U + d .

Electical current spike times are the key in these. Spike lag should be
minimized.
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Applications: ODE solvers in fixed-point arithmetic
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Applications: ODE solvers in fixed-point arithmetic
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Applications: ODE solvers in floating-point arithmetic

Another example. Solve

u′(t) = v(t), v ′(t) = −u(t).

With u(0) = 1, v(0) = 0 this is a unit circle in uv plane.

Using the Euler’s method (step size h = 2π/n):

uk+1 = uk + hvk , vk+1 = vk − huk .

Experiment through h

Increase n until h is on the order of round-off error.
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Applications: ODE solvers in floating-point arithmetic
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Other applications where stochastic rounding helps

See our survey for further details.

PDE solvers.

Numerical verification software.

Quantum computing.

Privacy preserving in data sets.
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Testing mathematical hardware to
determine numerical features
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Mixed-precision matrix multipliers on GPUs

a11 × b11 + a12 × b21 + a13 × b31 + a14 × b41

We are used to normalize-round after each op.

In hardware it is not necessarily the case.

Normalize at the end? Savings in circuit area and latency.

Round or drop bits? Savings.

Accumulate in higher precision? Can do with 1-bit granularity.
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Mixed-precision matrix multipliers on GPUs

Many devices now include MMA units:

Year Device Input formats Output formats Throughput (max)

2016 Google TPUv2 bfloat16 binary32 46 Tflop/s
2017 Google TPUv3 bfloat16 binary32 123 Tflop/s
2018 NVIDIA V100 binary16 binary32 125 Tflops/s
2018 Graphcore IPU1 binary16 binary32 125 Tflop/s
2020 Graphcore IPU2 binary16 binary32 250 Tflop/s
2020 NVIDIA A100 bfloat16,

binary16/64,
TensorFloat-32

binary32/64 312 Tflop/s

2021 AMD MI250X bfloat16,
binary16/32/64

- 383 Tflop/s

2022 NVIDIA H100 quarter,
bfloat16,
binary16/64,
TensorFloat-32

binary32/64 2000 Tflop/s

2022 Intel Ponte Veccio bfloat16,
binary16/64,
TensorFloat-32

- -
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Why test the mathematical hardware

IEEE 754 does not define strict rules on dot products:

“Implementations may associate in any order or evaluate in any wider
format.”

Implementations might differ.

Not documented in detail by vendors.

Massive speed means we are using MMAs in other areas.

Can be said we are back to pre-IEEE-754 with mixed-precision.

Eventually need to standardise (IEEE working group P3109).

For now we test to determine features.
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Recap: how do we test mathematical hardware

Presented at this seminar series in 2022.

Technique goes back to software called Paranoia from the 1980s.

MMAs more complicated than +,×,÷

Find floating-point inputs that will yield different outputs on different
hardware.

Input Hardware MMA
Model 1

2
3

· · ·
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Our main findings from testing

a11 × b11 + a12 × b21 + a13 × b31 + a14 × b41

1-bit difference in accumulators of V100 and T4/A100.

Normalization at the end, not at intermediate adds.

Rounding is not to nearest.

Monotonicity: increase one input, do not change order, dot product
decreases. See [Mikaitis, 2023].

No fixed order.

M. Mikaitis (Leeds) Low-Precision Hardware June 2023 36 / 39



Currently a manual process

Consider rounding:

�

�

�

�

RN or RURZ or RD

RZ or RURN or RD

+∞−∞

RURN, RZ
or RD

RN, RZ
or RURDd)

c)

b)

a)
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Started working on extending this work

Make the search for testing vectors automatic, or at least partially.

Remove the need for very specialized floating-point knowledge.

Make a library of behaviours and maintain as new hardware comes.

Mathematical

hardware

operation

Choose the

input domain

search strategy

Model 1
2

3

· · ·
CPFloat

WP1

Determine

test vectors

to differentiate

models

WP2

Deploy

on real

hardware

WP3
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Summary

Main takeaway

Mathematical hardware for machine learning is fast, but the level of
non-compliance to IEEE 754 is unknown and varies from device to device.
Stochastic rounding is non-standard and appearing slowly in hardware.

SR paper

M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis. Stochastic
rounding: implementation, error analysis and applications. R. Soc. Open

Sci.. Mar. 2022.
https://bit.ly/3Kzw7mA.

HW testing paper

M. Fasi, N. J. Higham, M. Mikaitis, and S. Pranesh. Numerical Behavior
of NVIDIA Tensor Cores . PeerJ Comp. Sci. Feb. 2021

https://bit.ly/442IIGT.
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Extra slide:
∑n

i=1 1/i = 1 + 1/2 + 1/3 · · · with SR
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Extra slide: ODE solvers in FP arithmetic with SR

Solve two equations using the Euler’s method:

yn+1 = yn − hyn, with y0 = 2−6, in [0, 1] with timestep h = 1/n.

yn+1 = yn − h yn
20 , with y0 = 1, in [0, 2−6] with timestep h = 2−6/n.

Experiment by changing n

Increase n ∈ [10, 106] until h on the order of the rounding errors of a
particular arithmetic.
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Extra slide: ODE solvers in FP arithmetic with SR
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(a) y ′ = −y , y(0) = 2−6, over [0, 1].
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(b) y ′ = −y/20, y(0) = 1 over [0, 2−6].
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