Numerical Behavior of **NVIDIA Tensor Cores**

M. Fasi^{*}, N. J. Higham, M. Mikaitis, & S. Pranesh

*Örebro University University of Manchester

Motivation

- Tensor Cores (TC) run matrix multiplyaccumulate (MMA) in hardware.
- 116 of the TOP500 supercomputers have V100 or A100 GPUs with TCs.
- Widely used in scientific computing.
- Numerical behavior is not necessarily the same as IEEE 754 software MMA.
- Knowing numerical behavior of TCs is essential for explaining numerical results, and developing error analysis.

Tensor cores

Tensor cores perform MMA on various size matrices. In the V100 and T4 GPUs, all of A, B, C, and D are 4×4 . In the A100, up to 8×8 , depending on the numerical type. These are chained together to perform MMAs of any size.

Mixed precision-inputs (binary16 in the V100) have lower precision than outputs (binary32). Features such as rounding, normalization, subnormal support might be different to software MMA with IEEE 754 arithmetic.

MANCHESTER 1824

The University of Manchester

Tests for NVIDIA V100 and A100 hardware's IEEE 754-compliance.

We found round-toward-zero in addition, > 24 bits in addition, normalization at the end rather than after each addition. Daper doi.org/10.7717/peerj-cs.330

Here we show details of testing the V100 GPU, but the techniques were easily adaptable to the T4 and the A100.

Accuracy of dot products

Set the first row of A and the first column of B to $1 - 2^{-11}$, $c_0 = 0$. Each product $a_{1,i} \times b_{i,1}$ should evaluate to $1 - 2^{-10} - 2^{-22}$ if held exactly, or to $1 - 2^{-10}$ if rounded back to binary16. This test showed that binary16 products are not rounded back to binary16, and we demonstrated that this is true irrespective of whether C and D are set to binary16 or 32. For testing precision of addition, we set the first row of A to 1, which gives

$$d_{11} = b_{11} + b_{21} + b_{31} + b_{41} + c_{11}.$$

Then we ran 5 different permutations of four addends set to 2^{-24} (targeting binary32), with the 5th set to 1. All permutations returned $d_{11} = 1$, which means there are up to four rounding errors and the addition starts from the highest magnitude addend.

Rounding modes

In the expression of d_{11} above, we set $b_{11} = 2, b_{21} = 2^{-23} + 2^{-24}$, and the rest to 0. In binary32, which tensor cores notionally use in adding, we expect $RN(b_{11} + b_{21}) = RU(b_{11} + b_{21}) =$ $2+2^{-22}$, while RZ $(b_{11}+b_{21}) = RD(b_{11}+b_{21})$ $b_{21}) = 2$. We did get 2. Then set $b_{11} = -2$ -2, $b_{21} = -2^{-23} - 2^{-24}$. Here we expect $\mathsf{RZ}(b_{11} + b_{21}) = -2, \ \mathsf{RD}(b_{11} + b_{21}) =$ $-2 - 2^{-22}$. Again 2 was the result, and we concluded that the rounding mode in computing dot products is RZ.

