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Motivation
•Tensor cores (NVIDIA) and matrix
engines (AMD) run matrix multiply-
accumulate (MMA) in hardware.

•145 of the June 2022 TOP500 su-
percomputers have V100, A100 or
MI250X GPUs with hardware MMA.

•Widely used in scientific computing.
•Numerical behavior is not necessarily
the same as IEEE 754 software MMA.

•At least six precisions now available:
fp8, fp16, bfloat16, TF32, fp32, fp64.
Still increasing as NVIDIA H100 (late
2022) adds fp8.

•Explaining numerical behavior of
hardware is essential for interpret-
ing numerical results, gauging repro-
ducibility, performing error analysis.
Hardware matrix ops
Tensor cores and matrix engines per-
form MMA on various size matrices. In
the V100 and T4 GPUs, all of A, B, C,
andD are 4×4. In the A100, up to 8×8,
depending on the numerical type. Vari-
ous sizes in theMI250X up to 32×8×32.
These are chained together to perform
MMAs of any size. Mixed precision—
inputs (binary16 in the V100) have
lower precision than outputs (binary32).
Features such as rounding, normaliza-
tion, subnormal support might be dif-
ferent to software MMA with IEEE 754
arithmetic. Most of these features are
not specified in the GPU manuals.

Tests forNVIDIA V100 and A100

hardware’s IEEE 754-compliance.
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We found round-toward-zero in
addition, > 24 bits in addition,
normalization at the end rather
than after each addition.
For paper scan theQR.

Here we show a few details of testing
the V100 GPU, but the techniques are
independent of the device.
Accuracy of dot products
Set the first row of A and the first col-
umn of B to 1 − 2−11, c0 = 0. Each
product a1,i × bi ,1 should evaluate to
1 − 2−10 − 2−22 if held exactly, or to
1 − 2−10 if rounded back to binary16.
This test showed that binary16 prod-
ucts are not rounded back to binary16,
and we demonstrated that this is true ir-
respective ofwhetherC andD are set to
binary16 or 32. For testing precision of
addition, we set the first row of A to 1,
which gives
d11 = b11 + b21 + b31 + b41 + c11.

Then we ran 5 different permutations
of four addends set to 2−24 (targeting
binary32), with the 5th set to 1. All
permutations returned d11 = 1, which
means there are up to four rounding er-
rors and the addition starts from the
highest magnitude addend.
Rounding modes
In the expression of d11 above, we set
b11 = 2, b21 = 2−23 + 2−24, and the rest
to 0. In binary32, which tensor cores no-
tionally use in adding, we expect
RN(b11+b21) = RU(b11+b21) = 2+2−22,

RZ(b11 + b21) = RD(b11 + b21) = 2.
We did get 2. Then set b11 = −2,
b21 = −2−23 − 2−24. Here we expect
RZ(b11 + b21) = −2, RD(b11 + b21) =
−2 − 2−22. Again 2 was the result, and
we concluded that the rounding mode
in computing dot products is RZ.
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