
Shi�-add-only exponential for the next generation
SpiNNaker system

Mantas Mikaitis
mikaitis@cs.man.ac.uk

Supervisor Dr David R. Lester
david.r.lester@manchester.ac.uk

Co-Supervisor Prof. Steve Furber
steve.furber@manchester.ac.uk

1 Exponential in simulations of Spiking-Neural-Networks

Exponentially decaying values can be met in many parts of biological systems: Neuron membrane potential, biophysics of synapses, Spike-Timing-
Dependent-Plasticity and more. As a result, for neuromorphic simulator designers, exponential is an important operation to have in order to simulate
these phenomena accurately. In the first SpiNNaker system, exponential was designed in so�ware which provided an easy to use but relatively slow and
limited exponential. In the following sections, I demonstrate a proposal to build a fast exponential unit in hardware that would be incorporated into the
next generation SpiNNaker-2 system.

2 Shi�-add algorithm

The main algorithm is based on the convergence algorithm presented in
Section 8 by Muller [2]. From Theorem 16 in the book, the sequences tn and
dn defined as

t0 = 0
tn+1 = tn + dnln(1 + 2−n)

dn =
{
1 if tn + ln(1 + 2−n) ≤ t
0 otherwise

satisfy

lim
n→∞

tn = t =
∞∑
n=0

dnln(1 + 2−n).

Now a sequenceEn is defined such that at any step n of the algorithm,
En = exp(tn).

Since t0 = 0, E0 is initialised as 1. When d = 1, we add ln(1 + 2−n) to tn. As a
resultEn+1 = exp(tn+1) = exp(tn + ln(1 + 2−n)) = exp(tn)exp(ln(1 + 2−n)) =
Enexp(ln(1+ 2−n)) = En(1+ 2−n) = En+En2

−n. Then as a series dependent
on dwe can write

En = En + dnEn2
−n

which requires only adder and shi�er, same as tn.

3 Accuracy

In the figure below, demonstrated is a number of incorrect bits by stopping
at each step from2 to64. I find that theaveragenumberof iterationsneeded
for a full 64-bit accuracy is 53.769120.

4 Natural logarithm using exp hardware

We can also obtain a similar algorithm for ln(x) by modifying a choice of
value d in the previous algorithm, to remove t = ln(x), which indeed we
want to calculate:

dn =
{
1 ifEn(1 + 2−n) ≤ x
0 otherwise

Which gives the same convergence as in the previous algorithm and hence
allows us to find an unknown ln(x) because tn converges to it.

5 Carry save adders

We use carry-save adders in order to avoid ripple-carry overhead. Only
when the last iteration finishes, a usual adder is used to get the final result.

6 Hardware Design

<< n

Ln

2nLn Truncate after
one fractional

4-digit
adder

L*

s c

4-address
LUT

L*

dn

64-bit
CSA

s c

ln(1+dn2
-n)

LUTs

n

Ln+1

En

>> n

2's complement,
zero

or pass

En2
-n

64-bit
CSA

64-bit
CSA

En+1

0-64bit number

Carry save
representation
(128bits + 2bits**)

Split CS number
to sum and interim
carry

s s

s

c
c

c

**

Tenca et al 2006
shifter

**

Range reduction

Convert
CS to

non-redundant

exp(x')

x

x'

Obtain non-reduced
result

exp(x)

References
[1] W. Gerstner, W. M. Kistler, R. Naud, L. Paninski Neuronal Dynamics 2014
[2] Jean-Michel Muller Elementary Functions - Algorithms and Implementation 3rd Ed. 2016
[3] A. F. Tenca and S. Park and L. A. Tawalbeh Carry-save representation is shi�-unsafe: the problem and its solution IEEE Transactions on Computers, 2006

