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1 Exponential in simulations of Spiking-Neural-Networks

Exponentially decaying values can be met in many parts of biological systems: Neuron membrane potential, biophysics of synapses, Spike-Timing-
Dependent-Plasticity and more. As a result, for neuromorphic simulator designers, exponential is an important operation to have in order to simulate
these phenomena accurately. In the first SpiNNaker system, exponential was designed in software which provided an easy to use but relatively slow and
limited exponential. In the following sections, | demonstrate a proposal to build a fast exponential unit in hardware that would be incorporated into the
next generation SpiNNaker-2 system.
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2 Shift-add algorithm 3 Accuracy

The main algorithm is based on the convergence algorithm presented in  In the figure below, demonstrated is a number of incorrect bits by stopping
Section 8 by Muller [2]. From Theorem 16 in the book, the sequences ¢, and ateach step from 2 to 64. | find that the average number of iterations needed

d,, defined as for a full 64-bit accuracy is 53.769120.
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Since ty = 0, Ej is initialised as 1. When d = 1, we add In(1 + 27") to t,,. As a o to
result B,11 = exp(t,.1) = exp(t, + In(1 +27")) = exp(t,)exp(in(l +27")) =
Eqexp(ln(1427")) = E,(1+27") = E,+ E,27". Then as a series dependent 0 -
on d we can write 30 4
Iteration
E,=FE,+d,E,2™" e 70
which requires only adder and shifter, same as ¢,,.
4 Natural logarithm using exp hardware 6 Hardware Design
We can also obtain a similar algorithm for In(z) by modifying a choice of
value d in the previous algorithm, to remove ¢ = In(z), which indeed we Range reductionle— x
want to calculate: y
P :{1 ifE,(14+2") <ux l
" 0 otherwise ; .
Which gives the same convergence as in the previous algorithm and hence > -
allows us to find an unknown In(z) because t,, converges to it. -
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We use carry-save adders in order to avoid ripple-carry overhead. Only N .9n >>n
when the last iteration finishes, a usual adder is used to get the final result. [ In(1+4,2%) ==
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