MANCHESTER

1824
The University of Manchester

COMP36212 Mathematical Systems and
Computation 2020/21

Week 3: Extending the Precision

Mantas Mikaitis, Department of Mathematics
Email: mantas.mikaitis@manchester.ac.uk

Version of 16 Feb. 2021

Goals

In the previous week, floating-point arithmetic of precision p was
presented.

We call precision p a working precision of a computer (most commonly this
is the precision that hardware computes in).

The main goal this week is to learn of the ways to extend the accuracy of
results beyond the working precision.

There are two strategies of interest:

1. Use hardware precision p to obtain more accurate results as unevaluated
sum of two or more values in precision p.

2. Use software to compute in higher precision than p.

2/40

Literature

The following material, and the references therein, can be used for further
reading.

* Handbook of Floating-Point Arithmetic by J-M. Muller and others, 2"
edition, 2018 (HFPA18).
O Sections 4.3 and 4.4 on 2Sum, Fast2Sum and 2Mul tFMA algorithms.

O Section 5.3 on accurate summation algorithms.
1 Most of Chapter 14.

e Various useful details on summation algorithms are in Chapter 4 of
Accuracy and Stability of Numerical Algorithms by N. J. Higham, 2"¢ edition,
2002 (ASNAO2).

3/40

Contents

Mixed-precision arithmetic and algorithms.

25um, Fast2Sum, and 2Mul t FMA algorithms.

Summation algorithms: recursive, compensated, and cascaded summation.
Arbitrary-precision arithmetic libraries.

Stochastic rounding: motivation, usage, and advantages in summation.

4/40

Some remarks

As in the previous weeks, we refer to floating point with the abbreviation
“FP”,

We refer to FP operations with o (a op b) with o € {RN, RZ, RU, RD} and
op € {+,—,%X,/, \/}.

We refer to exact operations with a op b.

We use the jtalic font to emphasize the important terms.

We use the typewriter font for algorithms and code.

For the multiplication we use * in the algorithms and X in the equations.

5/40

Mixed-precision

Mixed-precision arithmetic can be understood in two ways:

O Mixed-precision operations—an adder, a multiplier, or other, that produces an
answer by using multiple precisions (internally, or input/output).

O Mixed-precision algorithms—algorithms that utilize operations of different
(finite) precisions at different steps.

Note the different terminology used in literature: mixed precision, arbitrary

precision, variable precision, multiple precision, infinite precision—the first

concept differs from the other four.

6/40

Mixed-precision

An arithmetic operator with the same precision in inputs/outputs is called a
homogeneous operator.

An arithmetic operator with different precisions in inputs/outputs is called a
nonhomogeneous operator.

Most processors today implement only homogenous arithmetic operations.

IEEE 754 (1985) did not include a requirement for nonhomogeneous
variants.

Later iterations of the standard include them, but hardware has not yet
caught up.

7/40

Mixed-precision: FMA

One example of mixed-precision is the FMA instruction, that appears in
most modern CPUs (covered briefly last week).

Given three FP precision-p numbers a, b, and ¢, the FMA instruction
computes RN(axb + ¢).

Since by definition there can only be one rounding error in the whole
computation, the result of axb is not rounded before the addition.

It is held exactly in a wider internal format of 2p bits; in this format the
addition of c is performed followed by rounding back to p.

8/40

Mixed-precision in algorithms

Consider adding 2724 a hundred million times to a variable initialized to 1 in
binary32 arithmetic (see example mixed precision exampleO.c).

* In this example we do not have any

1 #}nclude <stdio.h> mixed precision.

2 #include <math.h> _

3 e All the variables are float.

4 int mainQ) { * This basic computation should add

Z goat 532 =d1; — the small value a hundred million

7 oat addend = pow(Z, -24); times to 1 and return ~6.96.

8 for (int i = 1; i < 100000000; i++)| * However, it returns 1.

9 sum = sum + addend; * The problem is that addend is too
10 , small to be added to 1 in binary32
11 printf("%.30f \n", sum); . . :

12 3 arithmetic—the sum is rounded to 1
on each iteration.

9/40

Mixed-precision

in algorithms

We can fix this problem by introducing higher precision in the addition step

(seemixed precision examplel.
1 #include <stdio.h> °
2 #include <math.h>
3
4 int main(Q) { °
5 float sum = 1;

6 float addend = pow(2, -24);

7 °
8 double temp_sum = sum;

9

10 for (int 1 = 1; 1 < 100000000; i++) o
11 temp_sum = temp_sum + addend;

12

13 sum = (float)temp_sum; .
14

15 printf("%.30f \n", sum);

16 }

c).

On line 8, we convert sum to binary64
precision temporarily.

On line 11, we perform binary64
addition.

On line 13 we convert the temporary
sum back to binary32 precision.

The answer produced by this program
now is 6.96046 ...

Both programs produce a binary32
answer, but one produces a completely
wrong answetr.

10/40

Optional exercise

Modify mixed precision exampleO.c to produce the right answer.
Do not use mixed-precision—only use the binary32 (float) variables.
The exact answer is 6.9604644775390625.

Once done, compare with the solution in
mixed precilsion exampleZ.c.

11/40

Mixed-precision in algorithms

But note that the technique showed above can impact performance if
binary64 arithmetic is more expensive than binary32 (depends on the
processor that is used).

Other direction that is sometimes taken is to reduce the precision in
different parts of a program or algorithm.

If a computer has fast low-precision arithmetic, find the parts in your
algorithms that can leverage it without causing major errors.

Therefore, mixed-precision algorithms are used either to improve accuracy
or performance.

This kind of programming requires very good knowledge of the underlying
hardware.

12/40

2S5um and Fast2Sum algorithms

Given two FP precision-p numbers, a and b, we can obtain s and t such
thats = RN(a+ b)ands+t=a+b.

Here s and t are precision-p FP numbers.
These methods are called error-free transformations.

Note that RN(x) refers to round-to-nearest ties-to-even rounding mode,
which is a default mode on most processors.

Other rounding modes cannot assure the error-free property.

We can think of s as the answer we get from the FP addition, and t as the
rounding error in the addition.

When a tuple (s, t) represents one quantity, we say that it is represented as
an unevaluated sum of two floating-point values.

Note that computing the sum of s and t does not achieve anything, since
RN(s + t) = s, so it is only useful to have them separately.

13/40

2S5um and Fast2Sum algorithms

Algorithm 3.1: Fast2Sum * Hereis one algorithm that
inputs a, b, with |a| = |Db| performs an error-free
s = RN(a + b) transform.
o * Note that arguments have to be
o’ = RN(s - a) sorted by magnitude.
t = RN(b - b') * The rounding mode must be RN,
return (s, t) otherwise t would not be an

exact error.

 However, even if the two requirements are violated, the sum of s and t might

still be good a approximation to the sum of a and b.
e Fast2Sumis useful in compensated summation algorithms that take inputs

sorted in any way (see later slides).

14/40

Fast2Sum informal explanation

Algorithm 3.1: Fast2Sum * First stepis to simply add the
inputs a, b, with |a| = |Db| arguments.
s = RN(a + D) * Inthat addition, we lose* some
o part of b to rounding.
ol = RN(s - a) * The second step obtains the
£ = RN(b - Db'") actual, rounded b, b’, that was
return (s, t) used in the addition.

* The final step computes the size of a piece of b that was lost in the first step.

* Or add something to b, depending on the rounding direction taken by RN. 15/40

2S5um and Fast2Sum algorithms

Algorithm 3.2
inputs a, b
s = RN(a + b)
a' = RN(s - b)
b' = RN(s - a')
e, = RN(a - a')
e, = RN(b - b'")
t = RN(e, + &)

return (s, t)

2Sum

Here is a more robust version of the previous.
Advantage over Fast2Sum is that no sorting
of arguments is required.

Similar principle, but now either a or b can
have smaller magnitude.

The algorithm does not assume which.

In steps 2 and 3, eithera’ = aor b’ = b.
Therefore only one of e, or e, can be nonzero.
The algorithm has 2X more steps, but the
depth is 5—steps 4 and 5 are parallel.

16/40

Optional exercise

Check 2sum. c in the example code where two f1oats are added with
the two presented algorithmes.

Run it and observe the outputs.
Notice what results Fast2Sum computes when arguments are swapped.
Check that s # a + b.

Confirm with more precision (for example, on paper) that we have
performed an error-free addition by checking that

s+t=a+b.

17/40

2MultFMA algorithm

Algorithm 3.3: 2MultFMA Now we look at the multiplication.

inputs a, b e This requires the FMA instruction (see
s = RN(a * b) Week 2) for performing ’Fhe secpn.d st.ep.
* First step performs a basic multiplication
t = RN(a * b - s) .
operation.
return (s, t) e The result from step 1 is a rounded

multiplication result.

* |Instep 2, the FMA is used to compute the multiplication again (but recall that
without rounding) and subtract the rounded result.

* Thus, tisthe errorinducedinstep 1, and axb = s + t.

e But there are some exceptions: t # aXb — s for very small a and b
(underflow).

18/40

Multi-word arithmetic

There exists algorithms for performing arithmetic operations on numbers
that are held as unevaluated sums of multiple FP numbers.

For example, we may produce two double-precision values from one of the
algorithms presented above.

Then, if we wish to keep computing using those two numbers, we can use
multi-word arithmetic algorithms.

Those interested, see the Sec. 14.1 of HFPA18 for more details.

19/40

Summation algorithms

Summation of a series of FP numbers is at the core of scientific computing.

It is required in, to name a few places, vector products, matrix vector
products, matrix-matrix products, means, variances, and polynomial
evaluation.

Accumulation of values as the data is being generated occurs in ODE and
PDE solvers, weight updates in machine learning, and similar.

FP arithmetic can benefit both from changing the order of summands as
well as algorithmic approaches that leverage error-free transformations.

20/40

Summation algorithms

Summation involves a problem of adding n values x4, ..., X, in FP

arithmetic.

That is, we wish to compute Y1-; X;.

Naturally, we wish to have the best possible accuracy.

For simplicity we will deal with nonnegative values x; = 0.

There are many techniques to perform FP summation, but the accuracy
depends on the data being summed and there is no best solution generally.

Those interested in various complex issues with different data distributions
and summation, start with Chapter 4 of ASNAO2.

21/40

Recursive summation

Algorithm 3.4: RecSum * Astraightforward solution is to read data
inputs x,.., x,. in the order it is stored/computed and
accumulate it.

s = X
, . e This technique is called recursive
for 1 = 2 to n .
summation.
s = RN(s + x;) * On every iteration we add a relative error
return s of up tou = 27P due to rounding in the

addition operation.

* The order of operations can play an important role in reducing the final error
of the computed sum.

e |f we sortin decreasing order, then we will be adding increasingly small
quantities to an increasingly bigger sum—this can result in more roundoff
errors.

22/40

Recursive summation

If we instead sort in an increasing order, we will be adding increasingly large
values to an increasingly large sum.

This usually results in less shifting of the significands and therefore less
rounding errors.

Consider a problem of computing the harmonic series:
o 1 1 1
=1+ +2+ .
=1 2 3
This series is known as a divergent series, but it is also known to converge

to some value in limited precision arithmetics, such as used in computers.

We modify the problem and compute the truncated series for some

N

number of steps N, that is, we compute Zi=1ﬁ.

23/40

Recursive summation: harmonic series

* None of the limited-precision arithmetics can compute harmonic series
exactly, and all of them can be said to be wrong right from the start.

* However, if we declare that double precision harmonic sum is our reference
solution, we can compare other arithmetics to it.

1 #include <stdio.h>

g #include <math.h> ° The example Code in

4 i”fc main() { recursive sumO.c sums
5 loat fsum = @; ..

6 double dsum = 0; the harmonic series for N =
7 long int N = 1000000; . . .

3 10° in an increasing order.

9 for (int 1 =1; 1 <= N; i++) { o Th d)

10 fsum += (float)l/(float)i; IS Program proauces:

11 dsum += (double)l/(double)i;

12 3} fsum 14.3573579788
13

14 printf("fsum = %.10f, dsum = %.10f, dsum - fsum = %.10f \n", dsum 14.3927267229
15 fsum, dsum, dsum-fsum);

1?} dsum-fsum | 0.0353687440

24/40

Recursive summation: harmonic series

e \We can reverse the order of evaluation and sum with recursive summation
fromi = 10° to i = 1, starting from the smallest addend.

* The example code isin recursive suml.c.

1 #include <stdio.h>
2 #include <math.h>

int main(Q) {
float fsum = 0;
double dsum = 0;
long int N = 1000000;

o NOoOUVT AW

O

for (int 1 = N; 1 > 0; i--) {
fsum += (float)1l/(float)i;
dsum += (double)1l/(double)i;

}

el el =
AP WNPEPS

printf("fsum = %.10f, dsum = %.10f, dsum - fsum = %.10f \n",
fsum, dsum, dsum-fsum);

e
o Ul

17 }

fsum 14.3926515579

dsum 14.39272677229

dsum—-fsum | 0.0000751649

* Notice the change in the
computed single precision
answer.

* The absolute erroris much
smaller with the values sorted
in an increasing order.

25/40

Compensated summation

Algorithm 3.5: CompSum * Compensated summation
inputs x,.., %,. algorithm captures the error
s = x in each addition using

1

£ -0 Fast2Sum.

o * The key idea is to use the
for i = 2 ton error, induced previously, in

temp = RN(x; + t) the next step.

(s, t) = Fast2Sum(s, temp) e |fthe erroris positive (some
end guantity was removed in

rounding), add it.
return s , :
e |f the erroris negative (some

qguantity was added in

The algorithm is usually rounding), then remove it.

attributed to W. M. Kahan.

Photo: https://en.wikipedia.org/wiki/William_Kahan

26/40

Compensated summation: harmonic series

12 int main() {

13 float fsum = 0;

14 double dsum = @;

15 long int N = 1000000;

16 float t = 0;

17

18 for (int 1 =1; 1 <= N; i++) {

19 float addend = (float)1l/(float)i + t;
20 fastTwoSum(fsum, addend, &fsum, &t);
21 dsum += (double)1l/(double)i;

22}

23

24 printf("fsum = %.10f, dsum = %.10f, dsum - fsum = %.10f \n",
25 fsum, dsum, dsum-fsum);

26

27 }

* Example code in
compensated sum.c.

e |t further reduces the absolute

errofr.
fsum 14.3927268982
dsum 14.39272677229

dsum—-fsum

-0.0000001753

 Online 19, we add the error from the addition in the previous step, to the next

element of the series.

* Online 20, we add the sum of them to the overall sum of the series, and

compute a new error.

27/40

Cascaded summation

Algorithm 3.6: CascSum

inputs Xl I AKX 4 Xn .

s = X,
t, e =0
for 1 = 2 to n

(s, t) = 2Sum(s, x;)
e = RN(e + t)

end

return RN (s + e)

Here the core idea is to accumulate

errors in a separate variable.

Accumulated errors are added to the

total sum at the end.

28/40

Cascaded summation: harmonic series

15 int main() {

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 }

float fsum = 0;
double dsum = 0;

long int N = 1000000;
float t = 0;

float e = 0;

for (int 1 = 1; 1 <= N; i++) {
float addend = (float)1l/(float)i;
twoSum(fsum, addend, &fsum, &t);
e += t;
dsum += (double)1/(double)i;

ks

fsum += e;

printf("fsum = %.10f, dsum = %.10f, dsum - fsum = %.10f \n",
fsum, dsum, dsum-fsum);

* Example code in
cascaded sum.c.

* Worse than compensated
summation in this problem.

fsum

14.3927278519

dsum

14.39272677229

dsum—-fsum

-0.0000011290

On line 24, we are adding a new element of the series to the total sum and

computing the error of that addition.

On line 25 we are adding that error into the total sum of errors.
On line 29, when the series finishes, we add the errors to the sum.

Stagnation

All the presented summation algorithms are computed in the working
precision, but utilize error-free transforms to improve accuracy.

The main issue with the FP addition is a problem termed stagnation.
It happens when RN(a + b) = a for some small b.

Informally, stagnation occurs when the two numbers are so different in
magnitude that the operation does not change the larger value.

b is entirely lost to rounding.

For example, harmonic series converges due to stagnation, when an
1

addend < becomes too small to affect the sum.

Using mixed-precision or different summation algorithms can help in
avoiding stagnation, depending on the problem.

30/40

Stagnation

* For single precision arithmetic, stagnation in harmonic series with recursive
summation in the decreasing order occurs around i = 2x10°.

* Example stagnation.c demonstrates this.

1 #include <stdio.h>
2 #include <math.h>
3

N

int main() {
float fsum = 0;
double dsum = @;
long int N = 5000000;

co N O Ul

9 for (int 1 =1; 1 <= N; 1++) {
10 fsum += (float)1l/(float)i;
11 dsum += (double)1/(double)i;
12 if (1 % 1000000 == 0)

13 printf("At iteration %d fsum = %.10f, dsum = %.10f \n",
14 1, fsum, dsum);

15 }

16

17 3}

31/40

Program stagnation.cinthe examples produces

At
At
At
At
At

Notice that £ sum stopped changing sometime after 2 000 000th iteration.
Double precision continues to add to the overall sum.
It has been shown in research that double precision stagnates as well after

iteration
iteration
iteration
iteration

iteration

1000000
2000000
3000000
4000000
5000000

Stagnation

fsum
fsum
fsum
fsum

fsum

14

.3573579788,
15.
15.
15.
15.

3110322952,
4036827087,
4036827087,
4036827087,

dsum
dsum
dsum
dsum

dsum

14

.3927267229
15.
15.
15.
16.

0858736534
4913386782
7790207090
0021642353

24 days of run time on a modern processor, after iteration i = 248.

32/40

Arbitrary-precision libraries

One other approach to gain more accurate results is to use arbitrary
precision libraries.

The main principle is that, instead of representing the data in the working
precision that the hardware supports, we can represent it in some arbitrary
(might be prespecified) precision.

Arithmetic is performed much slower, and the performance and memory
utilization changes with precision.

May or may not reuse hardware FP arithmetic, or can be based mainly on
integer arithmetic.

33/40

Arbitrary-precision libraries

Some software and libraries that include arbitrary-precision arithmetics:
1 Mathematica (general purpose mathematical software),
U Maple (software for both numeric and symbolic computing),
0 MATLAB Advanpix toolbox (provides fast arbitrary precision in MATLAB),

O MATLAB Symbolic Math Toolbox (another MATLAB arbitrary precision
toolbox), and

d GNU MPFR Arbitrary precision library with the interface for C).

Here we use GNU MPFR for demonstrating the basic principles.

34/40

GNU MPFR basics

Computations are done on MPFR FP objects which represent numbers or
NaN values.

Each MPFR FP object has its own precision which is specified on
initialization of an object.

MPFER FP objects are similar to IEEE 754 since they have an exponent and a
significand, but since this is arbitrary precision, they can occupy multiple
registers/memory locations.

MPFR library provides a wide array of elementary arithmetic operations as

well as elementary functions, trigonometric functions, pseudo-random
number generators and more, that operate on, and produce, MPEFR FP

objects.

35/40

GNU MPFR example

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19

#include <mpfr.h>
#include <stdio.h>

int main (void) {
mpfr_t num, den, res;

mpfr_inits2 (200, num, den, res, (mpfr_ptr) 0);

mpfr_set_si(num, 1, MPFR_RNDN);
mpfr_set_si(den, 3, MPFR_RNDN);

mpfr_div(res, num, den, MPFR_RNDN);

mpfr_printf("1/3 in 200-bit MPFR is %.100Rf \n", res);

mpfr_clears(num, den, res, (mpfr_ptr) 0);

double fres = (double)l/3;

printf("1/3 in double 1is
3

%.100f \n", fres);

The number 1/3 = 0.3333 ... is a
repeating decimal and cannot be
represented in the FP arithmetic.
We look at what the nearest value is
in different computer precisions.
Examplempfr example.c
computes 1/3 in 200-bit MPFR FP
type and double precision.

Prints out to 100 digits.

We first include mpfr.h on line 1; we then initialize three MPFR type

variables (num, dem,
and set num=1, dem=3 on lines 5-8.

res) with 200-bit precision (roughly 60 dec. digits)

On lines 10 and 12 we perform MPFR division and print out the result.

On line 14 we clear the MPFR objects.

36/40

GNU MPFR example

1 #include <mpfr.h>

2 #include <stdio.h>

3

4 int main (void) {

5 mpfr_t num, den, res;

6 mpfr_inits2 (200, num, den, res, (mpfr_ptr) @);

7 mpfr_set_si(num, 1, MPFR_RNDN);

8 mpfr_set_si(den, 3, MPFR_RNDN);

9

10 mpfr_div(res, num, den, MPFR_RNDN);
11
12 mpfr_printf("1/3 in 200-bit MPFR is %.100Rf \n", res);
13
14 mpfr_clears(num, den, res, (mpfr_ptr) 0);
15
16 double fres = (double)1/3;
17
18 printf("1/3 in double is %.100f \n", fres);
19 3}

* Theexampleinmpfr example.c produces the following output.
* The approximations to 1/3 in 200-bit MPFR FP type and double-precision are
shown. As expected, MPFR approximation has more correct digits (more 3's).

192:code_examples mantasmikaitis$./mpfr_example
1/3 in 200-bit MPFR is 0.334370502546310190284524010675630020706765
1/3 in double is 0.33333333333333331482961625624739099293947219848632812500

37/40

Stochastic rounding (SR)

Some latest hardware for machine learning introduced a rounding mode
that does not appear in the IEEE 754 standards.

It is usually called stochastic rounding.

The main idea of stochastic rounding is to preserve some information of the
bits that are thrown away in rounding.

However, they are not stored explicitly as in error-free transformations, but
make impact statistically over multiple roundings.

Saves memory and hardware costs, since we extend precision without
modifying the target precision.

However, it has expensive rounding logic compared with other rounding
modes since (pseudo)random number generation is required.

38/40

Stochastic rounding (SR)

Given x € R with |x] < x < [x] (when x &€ F it is between the two
neighbouring floats), stochastic rounding (SR) is defined as

SR(x) = [x] with the probability p,
*) = x| with the probability 1 — p.
Mode 1 p =0.5 x| X [x]
x — |x| | : | >
Mode 2 p = 0 «—> (0'e}
ulp(x) X p

Here ulp(x) is a gap between | x| and [x].
With mode 2, E(SR(x)) = x.

39/40

Stochastic rounding (SR)

Consider a demonstrative example of computing, in integer arithmetic,
0.25+4+ 0.25+0.25 4+ 0.25 = 1.

Each addend has to be rounded to integer to perform the addition using
an integer adder (note, in reality we would use fixed-point arith.).

With round to nearest, we get
RN(0.25) + RN(0.25) + RN(0.25) + RN(0.25) = 0.

Not an unexpected result since we have to round each 0.25 to the
nearest integer, 0.

With stochastic rounding mode 2 we most likely get
SR(0.25) 4+ SR(0.25) + SR(0.25) + SR(0.25) = 1.

The probability of rounding 0.25to 1isp = %, whereas rounding to 0 it

isl—p= %‘ Therefore, one out of 4 roundings above produces 1.

40/40

Acknowledgements

We are grateful to Massimiliano Fasi and Nicholas J. Higham for their
comments on the early drafts of these slides.

41/40

