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Goals

• In the previous week, floating-point arithmetic of precision 𝑝 was 
presented.

• We call precision 𝑝 a working precision of a computer (most commonly this 
is the precision that hardware computes in).

• The main goal this week is to learn of the ways to extend the accuracy of 
results beyond the working precision.

• There are two strategies of interest:
1. Use hardware precision 𝑝 to obtain more accurate results as unevaluated 

sum of two or more values in precision 𝑝.
2. Use software to compute in higher precision than 𝑝.
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Literature

The following material, and the references therein, can be used for further 
reading.
• Handbook of Floating-Point Arithmetic by J.-M. Muller and others, 2nd

edition, 2018 (HFPA18).
q Sections 4.3 and 4.4 on 2Sum, Fast2Sum and 2MultFMA algorithms.
q Section 5.3 on accurate summation algorithms.
q Most of Chapter 14.

• Various useful details on summation algorithms are in Chapter 4 of 
Accuracy and Stability of Numerical Algorithms by N. J. Higham, 2nd edition, 
2002 (ASNA02).
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Contents

• Mixed-precision arithmetic and algorithms.
• 2Sum, Fast2Sum, and 2MultFMA algorithms.
• Summation algorithms: recursive, compensated, and cascaded summation.
• Arbitrary-precision arithmetic libraries.
• Stochastic rounding: motivation, usage, and advantages in summation.
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Some remarks

• As in the previous weeks, we refer to floating point with the abbreviation 
“FP”.

• We refer to FP operations with ∘ (𝑎 op 𝑏) with  ∘ ∈ RN, RZ, RU, RD and 
op ∈ {+,−,×,/, √}.

• We refer to exact operations with 𝑎 op 𝑏.
• We use the italic font to emphasize the important terms.
• We use the typewriter font for algorithms and code.
• For the multiplication we use * in the algorithms and × in the equations.
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Mixed-precision
• Mixed-precision arithmetic can be understood in two ways:

q Mixed-precision operations—an adder, a multiplier, or other, that produces an 
answer by using multiple precisions (internally, or input/output).

q Mixed-precision algorithms—algorithms that utilize operations of different 
(finite) precisions at different steps.

• Note the different terminology used in literature: mixed precision, arbitrary 
precision, variable precision, multiple precision, infinite precision—the first 
concept differs from the other four.
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Mixed-precision

• An arithmetic operator with the same precision in inputs/outputs is called a 
homogeneous operator.

• An arithmetic operator with different precisions in inputs/outputs is called a 
nonhomogeneous operator.

• Most processors today implement only homogenous arithmetic operations.
• IEEE 754 (1985) did not include a requirement for nonhomogeneous 

variants.
• Later iterations of the standard include them, but hardware has not yet 

caught up.
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Mixed-precision: FMA

• One example of mixed-precision is the FMA instruction, that appears in 
most modern CPUs (covered briefly last week).

• Given three FP precision-𝑝 numbers 𝑎, 𝑏, and 𝑐, the FMA instruction 
computes RN(𝑎×𝑏 + 𝑐).

• Since by definition there can only be one rounding error in the whole 
computation, the result of 𝑎×𝑏 is not rounded before the addition.

• It is held exactly in a wider internal format of 2𝑝 bits; in this format the 
addition of 𝑐 is performed followed by rounding back to 𝑝.
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Mixed-precision in algorithms

Consider adding 2!"# a hundred million times to a variable initialized to 1 in 
binary32 arithmetic (see example mixed_precision_example0.c).

• In this example we do not have any 
mixed precision.

• All the variables are float.
• This basic computation should add 

the small value a hundred million 
times to 1 and return ~6.96.

• However, it returns 1.
• The problem is that addend is too 

small to be added to 1 in binary32 
arithmetic—the sum is rounded to 1
on each iteration.
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Mixed-precision in algorithms

We can fix this problem by introducing higher precision in the addition step 
(see mixed_precision_example1.c).

• On line 8, we convert sum to binary64 
precision temporarily.

• On line 11, we perform binary64 
addition.

• On line 13 we convert the temporary 
sum back to binary32 precision.

• The answer produced by this program 
now is 6.96046 …

• Both programs produce a binary32 
answer, but one produces a completely 
wrong answer.
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Optional exercise

• Modify mixed_precision_example0.c to produce the right answer.
• Do not use mixed-precision—only use the binary32(float)variables.
• The exact answer is 6.9604644775390625.
• Once done, compare with the solution in 

mixed_precision_example2.c.
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Mixed-precision in algorithms
• But note that the technique showed above can impact performance if 

binary64 arithmetic is more expensive than binary32 (depends on the 
processor that is used).

• Other direction that is sometimes taken is to reduce the precision in 
different parts of a program or algorithm.

• If a computer has fast low-precision arithmetic, find the parts in your 
algorithms that can leverage it without causing major errors.

• Therefore, mixed-precision algorithms are used either to improve accuracy 
or performance.

• This kind of programming requires very good knowledge of the underlying 
hardware.
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2Sum and Fast2Sum algorithms
• Given two FP precision-𝑝 numbers, 𝑎 and 𝑏, we can obtain 𝑠 and 𝑡 such 

that 𝑠 = RN(𝑎 + 𝑏) and 𝑠 + 𝑡 = 𝑎 + 𝑏.
• Here 𝑠 and 𝑡 are precision-𝑝 FP numbers.
• These methods are called error-free transformations.
• Note that RN(𝑥) refers to round-to-nearest ties-to-even rounding mode, 

which is a default mode on most processors.
• Other rounding modes cannot assure the error-free property.
• We can think of 𝑠 as the answer we get from the FP addition, and 𝑡 as the 

rounding error in the addition.
• When a tuple (𝑠, 𝑡) represents one quantity, we say that it is represented as 

an unevaluated sum of two floating-point values.
• Note that computing the sum of 𝑠 and 𝑡 does not achieve anything, since 

RN 𝑠 + 𝑡 = 𝑠, so it is only useful to have them separately.
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2Sum and Fast2Sum algorithms

Algorithm 3.1: Fast2Sum

inputs a, b, with |a| ≥ |b|
s  = RN(a + b)

b' = RN(s - a)

t  = RN(b – b')

return (s, t)

• Here is one algorithm that 
performs an error-free 
transform.

• Note that arguments have to be 
sorted by magnitude.

• The rounding mode must be RN, 
otherwise 𝑡 would not be an 
exact error.

• However, even if the two requirements are violated, the sum of 𝑠 and 𝑡 might 
still be good a approximation to the sum of 𝑎 and 𝑏.

• Fast2Sum is useful in compensated summation algorithms that take inputs 
sorted in any way (see later slides).
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Fast2Sum informal explanation

Algorithm 3.1: Fast2Sum

inputs a, b, with |a| ≥ |b|
s  = RN(a + b)

b' = RN(s - a)

t  = RN(b – b')

return (s, t)

• First step is to simply add the 
arguments.

• In that addition, we lose* some 
part of 𝑏 to rounding.

• The second step obtains the 
actual, rounded 𝑏, 𝑏′, that was 
used in the addition.

• The final step computes the size of a piece of 𝑏 that was lost in the first step.

* Or add something to 𝑏, depending on the rounding direction taken by RN.
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2Sum and Fast2Sum algorithms

Algorithm 3.2: 2Sum
inputs a, b

s  = RN(a + b)

a' = RN(s - b)

b' = RN(s – a')

ea = RN(a – a')
eb = RN(b – b')

t  = RN(ea + eb)

return (s, t)

• Here is a more robust version of the previous.
• Advantage over Fast2Sum is that no sorting 

of arguments is required.
• Similar principle, but now either 𝑎 or 𝑏 can 

have smaller magnitude.
• The algorithm does not assume which.
• In steps 2 and 3, either 𝑎′ = 𝑎 or 𝑏$ = 𝑏.
• Therefore only one of 𝑒% or 𝑒& can be nonzero.
• The algorithm has 2× more steps, but the 

depth is 5—steps 4 and 5 are parallel.
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Optional exercise

• Check 2sum.c in the example code where two floats are added with 
the two presented algorithms.

• Run it and observe the outputs.
• Notice what results Fast2Sum computes when arguments are swapped.
• Check that 𝑠 ≠ 𝑎 + 𝑏.
• Confirm with more precision (for example, on paper) that we have 

performed an error-free addition by checking that
𝑠 + 𝑡 = 𝑎 + 𝑏.
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2MultFMA algorithm

Algorithm 3.3: 2MultFMA
inputs a, b

s  = RN(a * b)

t  = RN(a * b – s)

return (s, t)

• Now we look at the multiplication.
• This requires the FMA instruction (see 

week 2) for performing the second step.
• First step performs a basic multiplication 

operation.
• The result from step 1 is a rounded 

multiplication result.

• In step 2, the FMA is used to compute the multiplication again (but recall that 
without rounding) and subtract the rounded result.

• Thus, 𝑡 is the error induced in step 1, and 𝑎×𝑏 = 𝑠 + 𝑡.
• But there are some exceptions: 𝑡 ≠ 𝑎×𝑏 − 𝑠 for very small 𝑎 and 𝑏

(underflow).
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Multi-word arithmetic

• There exists algorithms for performing arithmetic operations on numbers 
that are held as unevaluated sums of multiple FP numbers.

• For example, we may produce two double-precision values from one of the 
algorithms presented above.

• Then, if we wish to keep computing using those two numbers, we can use 
multi-word arithmetic algorithms.

• Those interested, see the Sec. 14.1 of HFPA18 for more details.
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Summation algorithms

• Summation of a series of FP numbers is at the core of scientific computing.
• It is required in, to name a few places, vector products, matrix vector 

products, matrix-matrix products, means, variances, and polynomial 
evaluation.

• Accumulation of values as the data is being generated occurs in ODE and 
PDE solvers, weight updates in machine learning, and similar.

• FP arithmetic can benefit both from changing the order of summands as 
well as algorithmic approaches that leverage error-free transformations.
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Summation algorithms

• Summation involves a problem of adding 𝑛 values 𝑥', … , 𝑥( in FP 
arithmetic.

• That is, we wish to compute ∑)*'( 𝑥).
• Naturally, we wish to have the best possible accuracy.
• For simplicity we will deal with nonnegative values 𝑥) ≥ 0.
• There are many techniques to perform FP summation, but the accuracy 

depends on the data being summed and there is no best solution generally.
• Those interested in various complex issues with different data distributions 

and summation, start with Chapter 4 of ASNA02.
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Recursive summation

Algorithm 3.4: RecSum
inputs x1,…,xn.

s = x1
for i = 2 to n

s = RN(s + xi)

return s

• A straightforward solution is to read data 
in the order it is stored/computed and 
accumulate it.

• This technique is called recursive 
summation.

• On every iteration we add a relative error 
of up to 𝑢 = 2!+ due to rounding in the 
addition operation.

• The order of operations can play an important role in reducing the final error 
of the computed sum.

• If we sort in decreasing order, then we will be adding increasingly small 
quantities to an increasingly bigger sum—this can result in more roundoff 
errors.
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Recursive summation

• If we instead sort in an increasing order, we will be adding increasingly large 
values to an increasingly large sum.

• This usually results in less shifting of the significands and therefore less 
rounding errors.

• Consider a problem of computing the harmonic series:

∑)*', '
)
= 1 + '

"
+ '
-
+ …

• This series is known as a divergent series, but it is also known to converge 
to some value in limited precision arithmetics, such as used in computers.

• We modify the problem and compute the truncated series for some 
number of steps 𝑁, that is, we compute ∑)*'. '

.
.
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Recursive summation: harmonic series

• None of the limited-precision arithmetics can compute harmonic series 
exactly, and all of them can be said to be wrong right from the start.

• However, if we declare that double precision harmonic sum is our reference 
solution, we can compare other arithmetics to it.

• The example code in 
recursive_sum0.c sums 
the harmonic series for 𝑁 =
10/ in an increasing order.

• This program produces:
fsum 14.3573579788

dsum 14.3927267229

dsum-fsum 0.0353687440
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Recursive summation: harmonic series

• We can reverse the order of evaluation and sum with recursive summation 
from 𝑖 = 10/ to 𝑖 = 1, starting from the smallest addend.

• The example code is in recursive_sum1.c.
fsum 14.3926515579

dsum 14.3927267229

dsum-fsum 0.0000751649

• Notice the change in the 
computed single precision 
answer.

• The absolute error is much 
smaller with the values sorted 
in an increasing order.
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Compensated summation

Algorithm 3.5: CompSum
inputs x1,…,xn.

s = x1
t = 0

for i = 2 to n

temp = RN(xi + t)
(s, t) = Fast2Sum(s, temp)

end
return s

• Compensated summation 
algorithm captures the error 
in each addition using 
Fast2Sum.

• The key idea is to use the 
error, induced previously, in 
the next step.

• If the error is positive (some 
quantity was removed in 
rounding), add it.

• If the error is negative (some 
quantity was added in 
rounding), then remove it.The algorithm is usually 

attributed to W. M. Kahan.
Photo: https://en.wikipedia.org/wiki/William_Kahan
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Compensated summation: harmonic series

• Example code in 
compensated_sum.c.

• It further reduces the absolute 
error.

fsum 14.3927268982

dsum 14.3927267229

dsum-fsum -0.0000001753

• On line 19, we add the error from the addition in the previous step, to the next 
element of the series.

• On line 20, we add the sum of them to the overall sum of the series, and 
compute a new error.
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Cascaded summation

Algorithm 3.6: CascSum
inputs x1,…,xn.

s = x1
t, e = 0

for i = 2 to n

(s, t) = 2Sum(s, xi)
e = RN(e + t)

end
return RN(s + e)

• Here the core idea is to accumulate 
errors in a separate variable.

• Accumulated errors are added to the 
total sum at the end.
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Cascaded summation: harmonic series

• Example code in 
cascaded_sum.c.

• Worse than compensated 
summation in this problem.

fsum 14.3927278519

dsum 14.3927267229

dsum-fsum -0.0000011290

• On line 24, we are adding a new element of the series to the total sum and 
computing the error of that addition.

• On line 25 we are adding that error into the total sum of errors.
• On line 29, when the series finishes, we add the errors to the sum.
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Stagnation

• All the presented summation algorithms are computed in the working 
precision, but utilize error-free transforms to improve accuracy.

• The main issue with the FP addition is a problem termed stagnation.
• It happens when RN 𝑎 + 𝑏 = 𝑎 for some small 𝑏.
• Informally, stagnation occurs when the two numbers are so different in 

magnitude that the operation does not change the larger value.
• 𝑏 is entirely lost to rounding.
• For example, harmonic series converges due to stagnation, when an 

addend '
)

becomes too small to affect the sum.

• Using mixed-precision or different summation algorithms can help in 
avoiding stagnation, depending on the problem.
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Stagnation

• For single precision arithmetic, stagnation in harmonic series with recursive 
summation in the decreasing order occurs around 𝑖 ≈ 2×10/.

• Example stagnation.c demonstrates this.
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Stagnation

• Program stagnation.c in the examples produces

At iteration 1000000 fsum = 14.3573579788, dsum = 14.3927267229

At iteration 2000000 fsum = 15.3110322952, dsum = 15.0858736534
At iteration 3000000 fsum = 15.4036827087, dsum = 15.4913386782
At iteration 4000000 fsum = 15.4036827087, dsum = 15.7790207090

At iteration 5000000 fsum = 15.4036827087, dsum = 16.0021642353

• Notice that fsum stopped changing sometime after 2 000 000th iteration.
• Double precision continues to add to the overall sum.
• It has been shown in research that double precision stagnates as well after 

24 days of run time on a modern processor, after iteration 𝑖 = 2#0.
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Arbitrary-precision libraries

• One other approach to gain more accurate results is to use arbitrary 
precision libraries.

• The main principle is that, instead of representing the data in the working 
precision that the hardware supports, we can represent it in some arbitrary 
(might be prespecified) precision.

• Arithmetic is performed much slower, and the performance and memory 
utilization changes with precision.

• May or may not reuse hardware FP arithmetic, or can be based mainly on 
integer arithmetic.
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Arbitrary-precision libraries

Some software and libraries that include arbitrary-precision arithmetics:
q Mathematica (general purpose mathematical software),
q Maple (software for both numeric and symbolic computing),
q MATLAB Advanpix toolbox (provides fast arbitrary precision in MATLAB),
q MATLAB Symbolic Math Toolbox (another MATLAB arbitrary precision 

toolbox), and
q GNU MPFR Arbitrary precision library with the interface for C).

Here we use GNU MPFR for demonstrating the basic principles.
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GNU MPFR basics

• Computations are done on MPFR FP objects which represent numbers or 
NaN values.

• Each MPFR FP object has its own precision which is specified on 
initialization of an object.

• MPFR FP objects are similar to IEEE 754 since they have an exponent and a 
significand, but since this is arbitrary precision, they can occupy multiple 
registers/memory locations.

• MPFR library provides a wide array of elementary arithmetic operations as 
well as elementary functions, trigonometric functions, pseudo-random 
number generators and more, that operate on, and produce, MPFR FP 
objects.
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GNU MPFR example
• The number 1/3 = 0.3333 … is a 

repeating decimal and cannot be 
represented in the FP arithmetic.

• We look at what the nearest value is 
in different computer precisions.

• Example mpfr_example.c
computes 1/3 in 200-bit MPFR FP 
type and double precision.

• Prints out to 100 digits.

• We first include mpfr.h on line 1; we then initialize three MPFR type 
variables (num, dem, res) with 200-bit precision (roughly 60 dec. digits) 
and set  num=1, dem=3 on lines 5–8.

• On lines 10 and 12 we perform MPFR division and print out the result.
• On line 14 we clear the MPFR objects.
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GNU MPFR example

• The example in mpfr_example.c produces the following output.
• The approximations to 1/3 in 200-bit MPFR FP type and double-precision are 

shown. As expected, MPFR approximation has more correct digits (more 3$𝑠).



38/40

Stochastic rounding (SR)

• Some latest hardware for machine learning introduced a rounding mode 
that does not appear in the IEEE 754 standards.

• It is usually called stochastic rounding.
• The main idea of stochastic rounding is to preserve some information of the 

bits that are thrown away in rounding.
• However, they are not stored explicitly as in error-free transformations, but 

make impact statistically over multiple roundings.
• Saves memory and hardware costs, since we extend precision without 

modifying the target precision.
• However, it has expensive rounding logic compared with other rounding 

modes since (pseudo)random number generation is required.
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Stochastic rounding (SR)

Given 𝑥 ∈ ℝ with 𝑥 ≤ 𝑥 ≤ 𝑥 (when 𝑥 ∉ 𝐹 it is between the two 
neighbouring floats), stochastic rounding (SR) is defined as

SR 𝑥 = U 𝑥 with the probability 𝑝,
𝑥 with the probability 1 − 𝑝.

Here ulp(𝑥) is a gap between 𝑥 and 𝑥 .

With mode 2, 𝔼 SR 𝑥 = 𝑥.

𝑥𝑥 𝑥

∝ 𝑝
∞0

Mode 1 𝑝 = 0.5

Mode 2 𝑝 =
𝑥 − 𝑥
ulp(𝑥)
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Stochastic rounding (SR)
• Consider a demonstrative example of computing, in integer arithmetic,

0.25 + 0.25 + 0.25 + 0.25 = 1.
• Each addend has to be rounded to integer to perform the addition using 

an integer adder (note, in reality we would use fixed-point arith.).
• With round to nearest, we get

RN 0.25 + RN 0.25 + RN 0.25 + RN 0.25 = 0.
• Not an unexpected result since we have to round each 0.25 to the 

nearest integer, 0.
• With stochastic rounding mode 2 we most likely get

SR 0.25 + SR 0.25 + SR 0.25 + SR 0.25 = 1.

• The probability of rounding 0.25 to 1 is 𝑝 = '
#, whereas rounding to 0 it 

is 1 − 𝑝 = -
#
. Therefore, one out of 4 roundings above produces 1.



41/40

Acknowledgements

We are grateful to Massimiliano Fasi and Nicholas J. Higham for their 
comments on the early drafts of these slides.


