

COMP36212 Mathematical Systems and Computation 2020/21

Week 3: Extending the Precision

Mantas Mikaitis, Department of Mathematics Email: mantas.mikaitis@manchester.ac.uk

Version of 16 Feb. 2021

Goals

- In the previous week, floating-point arithmetic of precision *p* was presented.
- We call precision *p* a *working precision* of a computer (most commonly this is the precision that hardware computes in).
- The main goal this week is to learn of the ways to extend the accuracy of results beyond the working precision.
- There are two strategies of interest:
 - 1. Use hardware precision p to obtain more accurate results as unevaluated sum of two or more values in precision p.
 - 2. Use software to compute in higher precision than p.

Literature

The following material, and the references therein, can be used for further reading.

- *Handbook of Floating-Point Arithmetic* by J.-M. Muller and others, 2nd edition, 2018 (HFPA18).
 - □ Sections 4.3 and 4.4 on 2Sum, Fast2Sum and 2MultFMA algorithms.
 - □ Section 5.3 on accurate summation algorithms.
 - □ Most of Chapter 14.
- Various useful details on summation algorithms are in Chapter 4 of Accuracy and Stability of Numerical Algorithms by N. J. Higham, 2nd edition, 2002 (ASNA02).

Contents

- Mixed-precision arithmetic and algorithms.
- 2Sum, Fast2Sum, and 2MultFMA algorithms.
- Summation algorithms: recursive, compensated, and cascaded summation.
- Arbitrary-precision arithmetic libraries.
- Stochastic rounding: motivation, usage, and advantages in summation.

Some remarks

- As in the previous weeks, we refer to floating point with the abbreviation "FP".
- We refer to FP operations with \circ (*a* op *b*) with $\circ \in \{RN, RZ, RU, RD\}$ and op $\in \{+, -, \times, /, \sqrt{\}}$.
- We refer to exact operations with a op b.
- We use the *italic* font to emphasize the important terms.
- We use the typewriter font for algorithms and code.
- For the multiplication we use * in the algorithms and \times in the equations.

Mixed-precision

- Mixed-precision arithmetic can be understood in two ways:
 - Mixed-precision operations—an adder, a multiplier, or other, that produces an answer by using multiple precisions (internally, or input/output).
 - Mixed-precision algorithms—algorithms that utilize operations of different (finite) precisions at different steps.
- Note the different terminology used in literature: mixed precision, arbitrary precision, variable precision, multiple precision, infinite precision—the first concept differs from the other four.

Mixed-precision

- An arithmetic operator with the same precision in inputs/outputs is called a *homogeneous* operator.
- An arithmetic operator with different precisions in inputs/outputs is called a *nonhomogeneous* operator.
- Most processors today implement only homogenous arithmetic operations.
- IEEE 754 (1985) did not include a requirement for nonhomogeneous variants.
- Later iterations of the standard include them, but hardware has not yet caught up.

Mixed-precision: FMA

- One example of mixed-precision is the FMA instruction, that appears in most modern CPUs (covered briefly last week).
- Given three FP precision-p numbers a, b, and c, the FMA instruction computes $RN(a \times b + c)$.
- Since by definition there can only be one rounding error in the whole computation, the result of $a \times b$ is not rounded before the addition.
- It is held exactly in a wider internal format of 2p bits; in this format the addition of c is performed followed by rounding back to p.

Mixed-precision in algorithms

Consider adding 2^{-24} a hundred million times to a variable initialized to 1 in binary32 arithmetic (see example mixed_precision_example0.c).

```
1 #include <stdio.h>
 2 #include <math.h>
 3
4 int main() {
    float sum = 1;
5
     float addend = pow(2, -24);
6
 7
8
     for (int i = 1; i < 10000000; i++)
9
       sum = sum + addend;
10
11
     printf("%.30f n", sum);
12 }
```

- In this example we do not have any mixed precision.
- All the variables are float.
- This basic computation should add the small value a hundred million times to 1 and return ~6.96.
- However, it returns 1.
- The problem is that addend is too small to be added to 1 in binary32 arithmetic—the sum is rounded to 1 on each iteration.

Mixed-precision in algorithms

We can fix this problem by introducing higher precision in the addition step (see mixed_precision_example1.c).

```
1 #include <stdio.h>
 2 #include <math.h>
 3
4 int main() {
    float sum = 1;
 5
    float addend = pow(2, -24);
 6
 7
8
     double temp_sum = sum;
 9
10
     for (int i = 1; i < 100000000; i++)
11
       temp_sum = temp_sum + addend;
12
13
     sum = (float)temp_sum;
14
15
     printf("%.30f n", sum);
16 }
```

- On line 8, we convert sum to binary64 precision temporarily.
- On line 11, we perform binary64 addition.
- On line 13 we convert the temporary sum back to binary32 precision.
- The answer produced by this program now is 6.96046 ...
- Both programs produce a binary32 answer, but one produces a completely wrong answer.

Optional exercise

- Modify mixed precision example0.c to produce the right answer.
- Do not use mixed-precision—only use the binary32 (float) variables.
- The exact answer is 6.9604644775390625.
- Once done, compare with the solution in mixed_precision_example2.c.

Mixed-precision in algorithms

- But note that the technique showed above can impact performance if binary64 arithmetic is more expensive than binary32 (depends on the processor that is used).
- Other direction that is sometimes taken is to reduce the precision in different parts of a program or algorithm.
- If a computer has fast low-precision arithmetic, find the parts in your algorithms that can leverage it without causing major errors.
- Therefore, mixed-precision algorithms are used either to improve accuracy or performance.
- This kind of programming requires very good knowledge of the underlying hardware.

2Sum and Fast2Sum algorithms

- Given two FP precision-p numbers, a and b, we can obtain s and t such that s = RN(a + b) and s + t = a + b.
- Here *s* and *t* are precision-*p* FP numbers.
- These methods are called *error-free transformations*.
- Note that RN(x) refers to *round-to-nearest ties-to-even* rounding mode, which is a default mode on most processors.
- Other rounding modes cannot assure the error-free property.
- We can think of *s* as the answer we get from the FP addition, and *t* as the rounding error in the addition.
- When a tuple (*s*, *t*) represents one quantity, we say that it is represented as an *unevaluated sum* of two floating-point values.
- Note that computing the sum of s and t does not achieve anything, since RN(s + t) = s, so it is only useful to have them separately.

2Sum and Fast2Sum algorithms

- Here is one algorithm that performs an error-free transform.
- Note that arguments have to be sorted by magnitude.
- The rounding mode must be RN, otherwise *t* would not be an *exact error*.
- However, even if the two requirements are violated, the sum of *s* and *t* might still be good a approximation to the sum of *a* and *b*.
- Fast2Sum is useful in *compensated summation* algorithms that take inputs sorted in any way (see later slides).

Fast2Sum informal explanation

- First step is to simply add the arguments.
- In that addition, we lose* some part of b to rounding.
- The second step obtains the actual, rounded *b*, *b*', that was used in the addition.
- The final step computes the size of a piece of *b* that was lost in the first step.

* Or add something to b, depending on the rounding direction taken by RN.

2Sum and Fast2Sum algorithms

- Algorithm 3.2: 2Sum inputs a, b s = RN(a + b)a' = RN(s - b)b' = RN(s - a') $e_a = RN(a - a')$ $e_{b} = RN(b - b')$ $t = RN(e_a + e_b)$ return (s, t)
- Here is a more robust version of the previous.
- Advantage over Fast2Sum is that no sorting of arguments is required.
- Similar principle, but now either *a* or *b* can have smaller magnitude.
- The algorithm does not assume which.
- In steps 2 and 3, either a' = a or b' = b.
- Therefore only one of e_a or e_b can be nonzero.
- The algorithm has 2× more steps, but the *depth* is 5—steps 4 and 5 are parallel.

Optional exercise

- Check 2sum.c in the example code where two floats are added with the two presented algorithms.
- Run it and observe the outputs.
- Notice what results Fast2Sum computes when arguments are swapped.
- Check that $s \neq a + b$.
- Confirm with more precision (for example, on paper) that we have performed an error-free addition by checking that

s+t=a+b.

2MultFMA algorithm

```
Algorithm 3.3: 2MultFMA
```

```
inputs a, b
```

```
s = RN(a * b)
```

```
t = RN(a * b - s)
```

```
return (s, t)
```

- Now we look at the multiplication.
- This requires the FMA instruction (see week 2) for performing the second step.
- First step performs a basic multiplication operation.
- The result from step 1 is a rounded multiplication result.
- In step 2, the FMA is used to compute the multiplication again (but recall that without rounding) and subtract the rounded result.
- Thus, t is the error induced in step 1, and $a \times b = s + t$.
- But there are some exceptions: $t \neq a \times b s$ for very small a and b (underflow).

Multi-word arithmetic

- There exists algorithms for performing arithmetic operations on numbers that are held as unevaluated sums of multiple FP numbers.
- For example, we may produce two double-precision values from one of the algorithms presented above.
- Then, if we wish to keep computing using those two numbers, we can use *multi-word arithmetic algorithms*.
- Those interested, see the Sec. 14.1 of HFPA18 for more details.

Summation algorithms

- Summation of a series of FP numbers is at the core of scientific computing.
- It is required in, to name a few places, vector products, matrix vector products, matrix-matrix products, means, variances, and polynomial evaluation.
- Accumulation of values as the data is being generated occurs in ODE and PDE solvers, weight updates in machine learning, and similar.
- FP arithmetic can benefit both from changing the order of summands as well as algorithmic approaches that leverage error-free transformations.

Summation algorithms

- Summation involves a problem of adding n values x_1, \ldots, x_n in FP arithmetic.
- That is, we wish to compute $\sum_{i=1}^{n} x_i$.
- Naturally, we wish to have the best possible accuracy.
- For simplicity we will deal with nonnegative values $x_i \ge 0$.
- There are many techniques to perform FP summation, but the accuracy depends on the data being summed and there is no best solution generally.
- Those interested in various complex issues with different data distributions and summation, start with Chapter 4 of ASNA02.

Recursive summation

```
Algorithm 3.4: RecSum

inputs x_1, ..., x_n.

s = x_1

for i = 2 to n

s = RN(s + x_i)

return s
```

- A straightforward solution is to read data in the order it is stored/computed and accumulate it.
- This technique is called *recursive summation*.
- On every iteration we add a relative error of up to $u = 2^{-p}$ due to rounding in the addition operation.
- The order of operations can play an important role in reducing the final error of the computed sum.
- If we sort in decreasing order, then we will be adding increasingly small quantities to an increasingly bigger sum—this can result in more roundoff errors.

Recursive summation

- If we instead sort in an increasing order, we will be adding increasingly large values to an increasingly large sum.
- This usually results in less shifting of the significands and therefore less rounding errors.
- Consider a problem of computing the *harmonic series*:

$$\sum_{i=1}^{\infty} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$$

- This series is known as a *divergent series*, but it is also known to converge to some value in limited precision arithmetics, such as used in computers.
- We modify the problem and compute the truncated series for some number of steps N, that is, we compute $\sum_{i=1}^{N} \frac{1}{N}$.

Recursive summation: harmonic series

- None of the limited-precision arithmetics can compute harmonic series exactly, and all of them can be said to be wrong right from the start.
- However, if we declare that double precision harmonic sum is our *reference solution*, we can compare other arithmetics to it.

```
1 #include <stdio.h>
 2 #include <math.h>
 3
 4 int main() {
 5
     float fsum = 0;
     double dsum = 0;
 6
 7
     long int N = 1000000;
 8
 9
     for (int i = 1; i <= N; i++) {</pre>
       fsum += (float)1/(float)i;
10
11
       dsum += (double)1/(double)i;
12
     }
13
     printf("fsum = \%.10f, dsum = \%.10f, dsum - fsum = \%.10f \n",
14
15
            fsum, dsum, dsum-fsum);
16
```

- The example code in recursive_sum0.c sums the harmonic series for N = 10⁶ in an increasing order.
- This program produces:

fsum	14.3573579788
dsum	14.3927267229
dsum-fsum	0.0353687440

Recursive summation: harmonic series

- We can reverse the order of evaluation and sum with recursive summation from $i = 10^6$ to i = 1, starting from the smallest addend.
- The example code is in recursive_sum1.c.

```
1 #include <stdio.h>
 2 #include <math.h>
 3
 4 int main() {
     float fsum = 0;
 5
 6
     double dsum = 0;
     long int N = 1000000;
 8
9
     for (int i = N; i > 0; i--) {
10
       fsum += (float)1/(float)i;
11
       dsum += (double)1/(double)i;
12
     }
13
     printf("fsum = \%.10f, dsum = \%.10f, dsum - fsum = \%.10f \n",
14
15
            fsum, dsum, dsum-fsum);
16
17 }
```

fsum	14.3926515579
dsum	14.3927267229
dsum-fsum	0.0000751649

- Notice the change in the computed single precision answer.
- The absolute error is much smaller with the values sorted in an increasing order.

Compensated summation

Algorithm 3.5: CompSum	
inputs x_1, \dots, x_n .	
$s = x_1$	
t = 0	
for i = 2 to n	
$temp = RN(x_i + t)$	
(s, t) = Fast2Sum(s,	temp)
end	
return s	

The algorithm is usually attributed to W. M. Kahan. Photo: https://en.wikipedia.org/wiki/William_Kahan

- Compensated summation algorithm captures the error in each addition using Fast2Sum.
- The key idea is to use the error, induced previously, in the next step.
- If the error is positive (some quantity was removed in rounding), add it.
- If the error is negative (some quantity was added in rounding), then remove it.

Compensated summation: harmonic series

<pre>12 int main() { 13 float fsum = 0; 14 double dsum = 0; 15 long int N = 1000000; 16 float t = 0; 17 18 for (int i = 1; i <= N; i++) { 19 float addend = (float)1/(float)i + t; 20 fastTwoSum(fsum, addend, &fsum, &t); 21 dsum += (double)1/(double)i; 22 } 23</pre>	 Example code in compensated_sum.c. It further reduces the absolute error. 	
	fsum	14.3927268982
	dsum	14.3927267229
24 printf("fsum = %.10f, dsum = %.10f, dsum - fsum = %.10f n ", 25 fsum, dsum, dsum-fsum);	dsum-fsum	-0.0000001753
26 27 }		

- On line 19, we add the error from the addition in the previous step, to the next element of the series.
- On line 20, we add the sum of them to the overall sum of the series, and compute a new error.

Cascaded summation

Algorithm 3.6: CascSum
inputs
$$x_1, ..., x_n$$
.
 $s = x_1$
 $t, e = 0$
for $i = 2$ to n
 $(s, t) = 2Sum(s, x_i)$
 $e = RN(e + t)$
end
return $RN(s + e)$

- Here the core idea is to accumulate errors in a separate variable.
- Accumulated errors are added to the total sum at the end.

Cascaded summation: harmonic series

```
15 int main() {
    float fsum = 0;
16
     double dsum = 0;
17
     long int N = 1000000;
18
     float t = 0:
19
20
     float e = 0;
21
22
     for (int i = 1; i <= N; i++) {</pre>
23
     float addend = (float)1/(float)i;
24
      twoSum(fsum, addend, &fsum, &t);
25
       e += t;
26
       dsum += (double)1/(double)i;
27
     }
28
29
     fsum += e;
30
     printf("fsum = \%.10f, dsum = \%.10f, dsum - fsum = \%.10f \n",
31
32
            fsum, dsum, dsum-fsum);
33
34 }
```

- Example code in cascaded_sum.c.
- Worse than compensated summation in this problem.

fsum	14.3927278519
dsum	14.3927267229
dsum-fsum	-0.0000011290

- On line 24, we are adding a new element of the series to the total sum and computing the error of that addition.
- On line 25 we are adding that error into the total sum of errors.
- On line 29, when the series finishes, we add the errors to the sum.

Stagnation

- All the presented summation algorithms are computed in the working precision, but utilize error-free transforms to improve accuracy.
- The main issue with the FP addition is a problem termed *stagnation*.
- It happens when RN(a + b) = a for some small b.
- Informally, stagnation occurs when the two numbers are so different in magnitude that the operation does not change the larger value.
- *b* is entirely lost to rounding.
- For example, harmonic series converges due to stagnation, when an addend $\frac{1}{i}$ becomes too small to affect the sum.
- Using mixed-precision or different summation algorithms can help in avoiding stagnation, depending on the problem.

Stagnation

- For single precision arithmetic, stagnation in harmonic series with recursive summation in the decreasing order occurs around $i \approx 2 \times 10^6$.
- Example stagnation.c demonstrates this.

```
#include <stdio.h>
 2 #include <math.h>
 3
4 int main() {
     float fsum = 0;
 6
    double dsum = 0;
     long int N = 5000000;
 8
 9
     for (int i = 1; i <= N; i++) {</pre>
10
       fsum += (float)1/(float)i;
11
       dsum += (double)1/(double)i;
12
       if (i % 1000000 == 0)
13
         printf("At iteration %d fsum = %.10f, dsum = %.10f \n"
14
                 i, fsum, dsum);
15
     }
16
```

Stagnation

• Program stagnation.c in the examples produces

At iteration 1000000 fsum = 14.3573579788, dsum = 14.3927267229 At iteration 2000000 fsum = 15.3110322952, dsum = 15.0858736534 At iteration 3000000 fsum = 15.4036827087, dsum = 15.4913386782 At iteration 4000000 fsum = 15.4036827087, dsum = 15.7790207090 At iteration 5000000 fsum = 15.4036827087, dsum = 16.0021642353

- Notice that fsum stopped changing sometime after 2 000 000th iteration.
- Double precision continues to add to the overall sum.
- It has been shown in research that double precision stagnates as well after 24 days of run time on a modern processor, after iteration $i = 2^{48}$.

Arbitrary-precision libraries

- One other approach to gain more accurate results is to use arbitrary precision libraries.
- The main principle is that, instead of representing the data in the working precision that the hardware supports, we can represent it in some arbitrary (might be prespecified) precision.
- Arithmetic is performed much slower, and the performance and memory utilization changes with precision.
- May or may not reuse hardware FP arithmetic, or can be based mainly on integer arithmetic.

Arbitrary-precision libraries

Some software and libraries that include arbitrary-precision arithmetics:

- □ Mathematica (general purpose mathematical software),
- □ Maple (software for both numeric and symbolic computing),
- □ MATLAB Advanpix toolbox (provides fast arbitrary precision in MATLAB),
- MATLAB Symbolic Math Toolbox (another MATLAB arbitrary precision toolbox), and
- GNU MPFR Arbitrary precision library with the interface for C).

Here we use GNU MPFR for demonstrating the basic principles.

GNU MPFR basics

- Computations are done on MPFR FP objects which represent numbers or NaN values.
- Each MPFR FP object has its own precision which is specified on initialization of an object.
- MPFR FP objects are similar to IEEE 754 since they have an exponent and a significand, but since this is arbitrary precision, they can occupy multiple registers/memory locations.
- MPFR library provides a wide array of elementary arithmetic operations as well as elementary functions, trigonometric functions, pseudo-random number generators and more, that operate on, and produce, MPFR FP objects.

GNU MPFR example

```
1 #include <mpfr.h>
 2 #include <stdio.h>
 4 int main (void) {
     mpfr_t num, den, res;
     mpfr_inits2 (200, num, den, res, (mpfr_ptr) 0);
 6
 7
     mpfr_set_si(num, 1, MPFR_RNDN);
 8
     mpfr_set_si(den, 3, MPFR_RNDN);
 9
10
     mpfr_div(res, num, den, MPFR_RNDN);
11
12
     mpfr_printf("1/3 in 200-bit MPFR is %.100Rf \n", res);
13
14
     mpfr_clears(num, den, res, (mpfr_ptr) 0);
15
16
     double fres = (double)1/3;
17
18
     printf("1/3 in double is
                                    %.100f \n", fres);
19 }
```

- The number 1/3 = 0.3333 ... is a *repeating decimal* and cannot be represented in the FP arithmetic.
- We look at what the nearest value is in different computer precisions.
- Example mpfr_example.c computes 1/3 in 200-bit MPFR FP type and double precision.
- Prints out to 100 digits.
- We first include mpfr.h on line 1; we then initialize three MPFR type variables (num, dem, res) with 200-bit precision (roughly 60 dec. digits) and set num=1, dem=3 on lines 5–8.
- On lines 10 and 12 we perform MPFR division and print out the result.
- On line 14 we clear the MPFR objects.

GNU MPFR example

```
1 #include <mpfr.h>
2 #include <stdio.h>
 3
4 int main (void) {
    mpfr_t num, den, res;
    mpfr_inits2 (200, num, den, res, (mpfr_ptr) 0);
 6
    mpfr_set_si(num, 1, MPFR_RNDN);
 8
    mpfr_set_si(den, 3, MPFR_RNDN);
 9
10
    mpfr_div(res, num, den, MPFR_RNDN);
11
12
    mpfr_printf("1/3 in 200-bit MPFR is %.100Rf \n", res);
13
14
    mpfr_clears(num, den, res, (mpfr_ptr) 0);
15
16
    double fres = (double)1/3;
17
    printf("1/3 in double is %.100f \n", fres);
18
19 }
```

- The example in mpfr_example.c produces the following output.
- The approximations to 1/3 in 200-bit MPFR FP type and double-precision are shown. As expected, MPFR approximation has more correct digits (more 3's).

Stochastic rounding (SR)

- Some latest hardware for machine learning introduced a rounding mode that does not appear in the IEEE 754 standards.
- It is usually called *stochastic rounding*.
- The main idea of stochastic rounding is to preserve some information of the bits that are thrown away in rounding.
- However, they are not stored explicitly as in error-free transformations, but make impact statistically over multiple roundings.
- Saves memory and hardware costs, since we extend precision without modifying the target precision.
- However, it has expensive rounding logic compared with other rounding modes since (*pseudo*)random number generation is required.

Stochastic rounding (SR)

Given $x \in \mathbb{R}$ with $[x] \le x \le [x]$ (when $x \notin F$ it is between the two neighbouring floats), stochastic rounding (SR) is defined as $SR(x) = \begin{cases} [x] & \text{with the probability } p, \\ [x] & \text{with the probability } 1 - p. \end{cases}$

Here ulp(x) is a gap between [x] and [x]. With mode 2, $\mathbb{E}(SR(x)) = x$.

Stochastic rounding (SR)

- Consider a demonstrative example of computing, in integer arithmetic, 0.25 + 0.25 + 0.25 + 0.25 = 1.
- Each addend has to be rounded to integer to perform the addition using an integer adder (note, in reality we would use fixed-point arith.).
- With round to nearest, we get RN(0.25) + RN(0.25) + RN(0.25) + RN(0.25) = 0.
- Not an unexpected result since we have to round each 0.25 to the nearest integer, 0.
- With stochastic rounding mode 2 we most likely get SR(0.25) + SR(0.25) + SR(0.25) + SR(0.25) = 1.
- The probability of rounding 0.25 to 1 is $p = \frac{1}{4}$, whereas rounding to 0 it is $1 p = \frac{3}{4}$. Therefore, one out of 4 roundings above produces 1.

Acknowledgements

We are grateful to Massimiliano Fasi and Nicholas J. Higham for their comments on the early drafts of these slides.