
COMP36212 Mathematical Systems and
Computation 2020/21

Mantas Mikaitis, Department of Mathematics
Email: mantas.mikaitis@manchester.ac.uk

Week 2: Floating-Point Arithmetic

Version of 20 Feb. 2021

2/47

Goals

• In the previous week, fixed-point arithmetic—a way to represent real
numbers with integers—was presented.

• Our aim this week is to learn about floating-point arithmetic—a different
(better) approach to represent a subset of real numbers on computers.

• The main advantages of floating-point over fixed-point arithmetic are:
q Wider range of representable values (underflow or overflow in FP

computations is much less common).
q Relative accuracy of representation rather than absolute—this is achieved by

widening the gaps between the numbers as they advance from 0 towards ±∞.
q Well-defined behaviour by the IEEE 754 standards.
q Error analysis of FP arithmetic is more widely used and more of it was

developed over the years.

• The main disadvantage: it is more expensive to implement.

3/47

Literature

The following material, and the references therein, can be used for further
reading.
• Chapters 1, 2, and 27 of the Accuracy and Stability of Numerical Algorithms

by N. J. Higham, 2nd edition, 2002 (ASNA02).
• Chapters 1–3, 7, and Appendix B of the Handbook of Floating-Point

Arithmetic by J.-M. Muller and others, 2nd edition, 2018 (HFPA18).
• Chapter 8 of the Digital Arithmetic by M. Ercegovac and T. Lang, 2004

(DA04).
• 754-2019 - IEEE Standard for Floating-Point Arithmetic, published by IEEE,

available on IEEE Xplore, 2019.

4/47

Contents

• General definitions and properties of floating-point arithmetic.
• IEEE 754 standardized floating-point arithmetic.
• Non-standard floating-point data types.
• Floating-point arithmetic algorithms: addition/subtraction, multiplication.
• Methods for error analysis.

5/47

Some remarks

• We refer to floating point with an abbreviation “FP”.
• We refer to FP operations with ∘ (𝑎 op 𝑏) with ∘ ∈ RN, RZ, RU, RD and

op ∈ {+,−,×,/, √}.
• We refer to exact operations with 𝑎 op 𝑏.
• We use the italic font to emphasize the important terms.
• We use the typewriter font for algorithms and code.
• For the multiplication we use * in the algorithms and × in the equations.

6/47

Floating-point representation
A set of FP numbers ℱ ⊂ ℝ is a subset of real numbers partially characterized
by

q a radix or base 𝛽 ≥ 2 (nowadays 𝛽 = 2),
q a precision 𝑝 ≥ 2, and
q extremal exponents 𝑒!"# and 𝑒!$%.

Usually 𝑒!"# < 𝑒!$% and 𝑒!"# = 1 − 𝑒!$%.

Elements of ℱ have the form 𝑚×𝛽&'()*, with 0 ≤ 𝑚 ≤ 𝛽(− 1 (an integer
significand or mantissa), and 𝑒!"# ≤ 𝑒 ≤ 𝑒!$% (an integer exponent).

Full specification also includes special values and binary encodings of the
exponent and significand, which we will see later.

7/47

Floating-point representation
• For example, consider a small unsigned FP system with 𝛽 = 2, 𝑝 = 3,

𝑒!"# = −2, 𝑒!$% = 3.
• Some example numbers in this system:

q 𝑚 = 2& = 4, 𝑒 = 0. This represents 𝑚×2'()*+ = 2&×2(& = 1.
q 𝑚 = 2+ = 2, 𝑒 = 1. This represents 2+×2(+ = 1.
q 𝑚 = 2, = 1, 𝑒 = 2. This represents 2,×2, = 1.
q 𝑚 = 2& + 2+ = 6, 𝑒 = 0. This represents (2& + 2+)×2(& = 1.5.
q 𝑚 = 2+ + 2, = 3, 𝑒 = 1. This represents (2+ + 2,)×2(+ = 1.5.

• There is a problem—same numbers can be represented in multiple ways!

8/47

Floating-point representation

• Elements of a certain ℱ may be expressed in more than one combination of
𝑒 and 𝑚.

• Usually it is desired to normalize FP systems so that each number has no
more than one representation.

• This is achieved by making sure that 𝛽('* ≤ 𝑚 ≤ 𝛽(− 1.
• Any number with 𝑚 satisfying this is said to be a normal number.
• Otherwise, when 𝑚 < 𝛽('*, necessarily 𝑒 = 𝑒!"# and the number is said

to be denormal or subnormal.
• With these constraints ℱ is normalized, and every FP number 𝑥 ∈ ℱ has a

single unique representation.
• Usually the first digit of 𝑚 is implicit, and not stored, since it does not

change for normal values.

9/47

Floating-point representation

• Back to the examples shown before in the small FP system, now we can
cross out all the representations where 𝑚 < 2('*, unless 𝑒 ≠ −2 (none
here):
q 𝑚 = 2& = 4, 𝑒 = 0. This represents 𝑚×2'()*+ = 2&×2(& = 1.
q 𝑚 = 2+ = 2, 𝑒 = 1. This represents 2+×2(+ = 1.
q 𝑚 = 2, = 1, 𝑒 = 2. This represents 2,×2, = 1.
q 𝑚 = 2& + 2+ = 6, 𝑒 = 0. This represents (2& + 2+)×2(& = 1.5.
q 𝑚 = 2+ + 2, = 3, 𝑒 = 1. This represents (2+ + 2,)×2(+ = 1.5.

10/47

Floating-point representation

• Some notable floating-point numbers in ℱ:
q Smallest positive FP number (subnormal) is 𝛽'!"#×𝛽+(- = 𝛽+*'!"#(-.
q Largest positive FP number is 𝛽'!$%× 𝛽 − 𝛽+(- .
q Smallest positive normal FP number is 𝛽'!"#.

• When some computed FP number is smaller than the smallest subnormal
number, the result is said to cause an underflow which is usually flagged in
the processors.

• However, note that rounding (see later) can "bump up" the values that
underflow to the smallest representable number, thus causing no signalled
underflow (due to this underflow requires a precise definition—before or
after rounding).

• Similarly, overflow occurs when some computed value becomes larger than
the largest FP number after rounding.

11/47

Floating-point representation

Special FP values are
q zero, most commonly represented with 𝑚 = 0 and 𝑒 = 𝑒!"# − 1 = −𝑒!$%

(usually both positive and negative zeros are available),
q infinities (±∞), for representing values that overflow. Infinities are usually

represented with with 𝑒 = 𝑒!$% + 1 and 𝑚 = 0, and
q NaNs (not-a-number), for operations that do not produce meaningful values

(such as −2). These are usually represented with 𝑒 = 𝑒!$% + 1 and 𝑚 ≠ 0.

12/47

Small floating-point system
• Again consider a small unsigned FP system with 𝛽 = 2, 𝑝 = 3, 𝑒!"# = −2,

𝑒!$% = 3.
• We now bridge the mathematical definition and the bit-level representation

of this binary FP system (necessary to implement a practical arithmetic on a
computer).

• This will require us to choose the layout of binary FP data and the binary
encoding of various parts, as well as, later, implement arithmetic
operations.

• The data is represented, in an IEEE 754 fashion (see later), with the
exponent bits (3 bits) followed by 𝑝 − 1 = 2 significand bits (with one bit
implicit and not stored).

• In a signed FP system, an extra sign bit would be added before the
exponent.

13/47

Small floating-point system

• The layout of the data is as follows.

• Here 𝐸 is a binary exponent and 𝑀 is a binary significand.
• The encoding of 𝑒 is denoted as 𝑒 = 𝐸 − 𝑒!$% (biased exponent).
• The encoding of 𝑚 is denoted as 𝑚 = 2('* +𝑀 (𝑚 = 𝑀 for subnormals).
• Examples:

q Binary value 011002 represents 𝑚×𝛽'(-*+ = 2&×2(& = 1.
q Binary value 010002 represents 2&×2() = 0.5.
q Binary value 010102 represents 2& + 2+ ×2() = 0.75.

𝐸

𝑀

14/47

Small floating-point system

• The value 000002 is reserved for representing zero.
• The values 000012 to 000112 are reserved for subnormal numbers with

𝑒 = 𝑒!"# = −2.
• The values 001002 to 110112 represent normalized numbers as per

definition.
• The value 111002 represents +∞.
• The values 111012 to 111112 represent NaNs.

15/47

Small floating-point system

Binary
value

FP value Binary
value

FP value Binary
value

FP value Binary
value

FP value

00000 0 01000 0.5 10000 2 11000 8

00001 0.0625 01001 0.625 10001 2.5 11001 10

00010 0.125 01010 0.75 10010 3 11010 12

00011 0.1875 01011 0.875 10011 3.5 11011 14

00100 0.25 01100 1 10100 4 11100 +∞
00101 0.3125 01101 1.25 10101 5 11101 NaN

00110 0.375 01110 1.5 10110 6 11110 NaN

00111 0.4375 01111 1.75 10111 7 11111 NaN

The list of values representable in our small FP system. Subnormals in blue.

16/47

Small floating-point system

0 0.5 1 2 4 81.5 2.5 3 3.5 5 6 7 10 12 14

• The subset of FP numbers is marked on a real number axis above.
• The gaps between numbers increase 2× on every power of 2, except 0.25.
• The gaps between subnormals and the first and second power-of-2 FP numbers

are equivalent to 2&+,-×2*'(= 0.0625.
• In general, the gap in front of any binary FP number 𝑥 = 2&'()*×𝑚 is equal

to 2&×2*'(.
• This is commonly called a unit of least precision (ulp)* and written as a function

𝑢𝑙𝑝 𝑥 (beware of different definitions of the ulp in literature).
• Relative errors are sometimes measured in ulps to hide the information about

the sizes of gaps—e.g. above, 4 is 8ulps (of different sizes) away from 1.
• The value 2*'(is commonly called a machine epsilon of an FP arithmetic, and

denoted as 𝜀.
* Also called unit in the last place (ulp).

17/47

IEEE 754 FP arithmetic standard

• IEEE 754 is a standard for FP arithmetic.
• First version in 1985, followed by revisions in 2008 and 2019.
• It specifies, among other things,

q four binary FP formats, three for computation and one for data interchange;
q decimal FP formats (we will only focus on binary formats here);
q add, subtract, multiply, divide, square root, compare, and various other

operations on FP numbers that are required for an arithmetic to be IEEE 754
compliant;

q floating-point exceptions and their handling, particularly including NaN FP
values which are categorized into quiet NaNs and signalled NaNs;

q rounding modes of FP arithmetics;
q a concept of correctly rounded FP data; and

q Recommended functions, such as exp, log, pow, tan, cos and others.

18/47

IEEE 754 fused multiply-add

• IEEE 754 defines an operation that comprises two basic arithmetic
operations in one: ∘ (𝑥×𝑦 + 𝑧) where all the inputs as well as the result are
FP numbers—this is called a fused multiply-add (FMA).

• Notice that there is only a single rounding, therefore this is not the same as
performing the multiplication t = ∘ (𝑥×𝑦) followed by addition ∘ (𝑡 + 𝑧).

• An FMA is better in terms of accuracy and sometimes can result in speeding
up the code.

• Compilers usually take advantage of the FMA instruction wherever possible.
• However, see Sec. 2.6 in ASNA02 for some tricky situations that the use of

FMA can present.

19/47

IEEE 754 FP arithmetic standard
binary128

binary64

binary32

binary16

15-bit exp. 112-bit significand

52 bits11

23 bits8

10 bits5

• The formats above are all signed, having a sign bit at the front.
• The values including sign are expressed with (−1)+×𝑚×2&'()*, where 𝑠 is a

sign bit with 𝑠 = 1 if the FP number is negative and 𝑠 = 0 otherwise.
• Binary16 is defined only for memory operations, not computation, however,

various hardware devices can perform computation.
• Binary128 is rare in hardware.
• Most hardware these days is equipped with binary64 and binary32 arithmetics,

with various operations (in C language double and float respectively).

20/47

Intel's extended precision

• Intel's x86 instruction sets provide an 80-bit FP data type, starting with the
Intel 8087 math coprocessor (~1980).

• It is based on the extended precision specification of the IEEE 754 standard.
• This format is encoded similarly to binary32/64 formats, except there is no

implicit bit and bit '1' for normalized numbers is stored before the
significand.

• Floating-point registers are 80 bits wide to accommodate this format, so
operations with any lower precision formats usually also maintain 80 bits
while data stays in registers, unless specified on compilation not to do that
(speed penalty added due to extra rounding after each operation).

x86 80-bit 63-bit fraction part15

1-bit integer part

21/47

List of all common FP datatypes

binary128

binary64

binary32

binary16

15 bits 112 bits

52 bits11

23 bits8

10 bits5

Other FP datatypes that appear in various Intel, ARM, and NVIDIA devices

bfloat16 78

TensorFlo
at-32

10 bits8

IEEE 754 datatypes

x86 80-bit 63-bit fraction part15

1-bit integer part

22/47

List of FP arithmetics in hardware

• The table below provides a list of main FP arithmetic types and various values.
• Here 𝑓!"# and 𝑠!"# are minimum positive normal and subnormal FP values resp.

Optional exercise: Derive all the values in rows 3-5 of the table
using the general FP arithmetic definitions in previous slides.

23/47

FP arithmetic in C

• Example code in fp_arithmetic_intro.c shows some usage of
binary32 (float) and binary64 (double) data types. Output below.

• Some values held in float
and double data types,
including infinity.

• We printed out the encoding of
those values in hexadecimal
and binary.

• The binary printout is split into
sign, exponent and significand
with a space between.

• Remember that there is an
implicit extra bit in the
significand that is not shown.

24/47

Optional exercise

Determine on paper or calculator, using the definitions above, what binary32
FP numbers are represented by the following binary patterns.

• 0 10000000 01000000000000000000000 (2.5)

• 1 10001111 00000000000000000000000 (-2^16)

• 0 11111111 10000000011111100000011 (NaN)

• 1 11111111 00000000000000000000000 (-INF)
• 1 10000010 11100100000000000000000 (-15.125)

• 0 10010011 00000000000000001000000 (1048584)

• 1 01111111 00000000000000000000000 (-1)

25/47

Rounding

• Arithmetic operations or functions that take FP inputs and produce FP
outputs can internally produce outputs in higher precision.

• An operation that maps some value into a target FP arithmetic is called
rounding.

• Rounding is performed as part of every FP operation as well as in
conversion between different data types.

• We denote rounding with ∘ (𝑥 op 𝑏) where op ∈ {+,−,×,/, √}, or ∘ (𝑥) for
rounding in conversion, and ∘ ∈ RN, RZ, RU, RD (see next slide).

• In fixed-point arithmetics, after rounding, usually saturation is performed,
which returns a maximum representable value if 𝑥 overflows.

• In FP arithmetic, overflows (including due to rounding) automatically return
infinity—this is suitable in most cases.

26/47

Rounding
IEEE 754-2019 specifies the following rounding modes for binary FP arithmetic.

q Round toward −∞: the rounding function RD(𝑥) returns a maximum FP value,
in the target precision, that is not greater than 𝑥.

q Round toward +∞: RU(𝑥) returns the smallest FP value that is not less than 𝑥.
q Round toward zero: RZ(𝑥) returns the closest FP value that is not greater in

magnitude than |𝑥|.
q Round to nearest, ties to even: RN(𝑥) returns the closest FP value, and if there

are two that are equally close, the one that has an even significand is returned
(least significant bit of the significand is zero). This is usually a default mode in
most hardware.

Consider three consecutive values in some precision-𝑝 FP arithmetic: 1, 1 + 𝜀,
and 1 + 2𝜀. The first and the third have even significands, while the second
odd. Then, RN 1 + 𝜀/2 = 1, whereas RN 1 + 𝜀 + 𝜀/2 = 1 + 2𝜀.

27/47

Rounding

• Here various rounding cases are shown.
• The value 𝑥 is rounded to either of the two neighbouring FP values 𝑥*, 𝑥,.
• The value 𝑥! is the middle point, which is not an FP value here.

28/47

Rounding

There are two terms commonly appearing when talking about rounding.
• Correct rounding—when some FP operation or function, for all possible

inputs, produces values as if the function was computed in infinite precision
and unbounded range and then rounded, it is said to be a correctly rounded
FP operation for a given rounding mode.

• Faithful rounding—common misuse of faithful arithmetic, which says that
either of the two FP values that surround the exact result are returned by
FP operations, not necessarily conforming with the definition of any
rounding mode.

• Any arithmetic that provides the correctly rounded results is faithful.

29/47

Table Maker's dilemma
• Correct rounding for an arithmetic is a much more strict requirement than

it being a faithful arithmetic.
• IEEE 754 requires only addition/subtraction, multiplication, division, square

root, fused multiply-add, and conversion operations correctly rounded.
• More complex functions, such as exp, log, sin, cos and others, are

recommended by the IEEE 754, not required, since they are expensive to
implement, especially with correct rounding.

• The problem comes down to the fact that, in general, outputs of
elementary functions can produce outputs that are non-terminating
decimals which might require infinitely many digits for deciding the correct
rounding.

• The term is said to be coined by William M. Kahan, a Turing Award winner
and one of the main people behind the floating-point standardization.

30/47

Some properties of rounding

• If some number 𝑥 is an FP number in the target precision, then ∘ 𝑥 = 𝑥.
• Rounding is a monotonic or a nonincreasing mapping of real numbers to FP

numbers—this means that if we take any two real numbers 𝑥, 𝑦 such that
𝑥 ≤ 𝑦, then we have that ∘ 𝑥 ≤ ∘ 𝑦 , and similarly for when 𝑥 ≥ 𝑦.

• RN is an unbiased rounding scheme, whereas RZ, RD, RU are biased
(directed rounding methods).

• RU cannot round to −∞, while RD cannot round to +∞.
• RN and RZ are symmetric with regards to zero.
• RU 𝑥 = −RD(−𝑥) and RD 𝑥 = −RU(−𝑥).
• In case of a tie when, for example, 𝑥 is halfway between the largest FP

value and infinity, RN rounds to infinity.

31/47

FP arithmetic operations

• FP numbers cannot be manipulated with integer arithmetic units such as
adders and multipliers, as can be done for fixed-point numbers.

• Algorithms for manipulating FP numbers can be implemented by using the
integer arithmetic units with some additional shifting and and bit-masking.

• If an FP arithmetic needs to be computed in hardware, for speed purposes,
then a separate Floating-Point Unit (FPU) is most commonly designed in
processors with a dedicated register bank and instructions.

• Next we look at algorithms for adding and multiplying FP numbers in order
to get a better sense of what is involved in designing an FP arithmetic
library.

• Basic principles are similar for both software and hardware
implementations, but some low-level details differ (those interested refer to
HFPA18).

32/47

FP arithmetic operations: Add
For simplicity, we work with two positive normalized precision-𝑝 FP numbers
𝑥 = 2&.×𝑚% and 𝑦 = 2&/×𝑚- (we drop the extra factors of 2'()* to
simplify). In the case of signed data some sign manipulation would have to be
added at various steps (see the literature).

1. If 𝑒- > 𝑒% swap 𝑥 and 𝑦. We then have 𝑒% ≥ 𝑒-.

2. Perform binary shift right of 𝑚- by 𝑒% − 𝑒- steps to compute 2'(&.'&/)×
𝑚-. This step is called a significand alignment step.

3. Since the significands were aligned, we set 𝑒- = 𝑒%.
4. Addition now comes down to adding the significands: 2&.×𝑚% +

2&.×2'(&.'&/)×𝑚- = 2&.×(𝑚% + 2'(&.'&/)×𝑚-). Since the significands
are binary integers, this addition is a binary integer addition of 𝑝 + 1 bits
(extra bit is required for a possible carry out).

33/47

FP arithmetic operations: Add

5. We now have the sum 2&0×𝑚0 with the significand 𝑚0 stored in 𝑝 + 1 +
3 bits, and 𝑒0 = 𝑒%. The extra 3 bits come from the significand alignment
step—when shifting 𝑚- right, instead of throwing out the bits that fall off,
we keep the last 2 ones and form a third bit by an OR of the rest that fall
off in shifting. Those extra bits later are used for rounding.

6. Recall that precision-𝑝 significands of normalized FP numbers always have
1 as the most significant bit. In 𝑚0 we have an extra bit at the front which
could be 1 (in the case of carry out in step 4), and if that is the case, we
shift 𝑚0 right by one bit to satisfy the definition; otherwise we remove the
most significant bit (which is zero) and keep 𝑝 + 3 bits of 𝑚0. This is called
a normalization step.

7. Perform rounding of 𝑚0 to 𝑝 bits. If rounding causes a carry out, do the
normalization one more time.

34/47

FP arithmetic operations: Add

8. Finally, if 𝑒0 > 𝑒!$%, overflow occurs. Otherwise the final answer
∘ 𝑥 + 𝑦 = 2&0×𝑚0 is returned.

A few things worth noting.
• We do not handle subnormal inputs here. In that case, some preprocessing

of the inputs would have to be done (some more details in the literature).
• Notice how the whole algorithm is performed using basic operations:

comparison, binary shifting, binary integer addition. This demonstrates that
FP arithmetic, at the core, is fixed-point arithmetic with some extra bit
manipulations around the integer operations.

• During the normalization, the three extra bits for rounding have to be
recomputed.

35/47

FP addition example

• Again consider a small unsigned FP system with 𝛽 = 2, 𝑝 = 3, 𝑒!"# = −2,
𝑒!$% = 3.

• The encoding is .

• Take 𝑥 = 0.25 (001002) and 𝑦 = 1.5(011102).
• Here 𝑒% = −2, 𝑚% = 100, (implicit 1 attached), 𝑒- = 0, 𝑚- = 110,.

Go through the steps of the FP addition algorithm:
1. We have 𝑒- > 𝑒%, so we swap the numbers. This gives 𝑒% = 0, 𝑚% =

110,, 𝑒- = −2, 𝑚- = 100,.

𝐸

𝑀

36/47

FP addition example
2. Shift 𝑚- = 100 right by 𝑒% − 𝑒- = 2 steps. This gives 𝑚- = 001 (ignore

two bottom bits from shifting—they are zero, no rounding required).
3. Set 𝑒- = 𝑒% = 0.

4. Add the significands: 𝑚% +𝑚- = 110 + 001 = 0111.

5. Now the result’s exponent and significand are 𝑒0 = 𝑒% = 𝑒- = 0, and
𝑚0 = 0111,.

6. Drop the carry out bit—since it is 0, no normalization required: 𝑚0 =
111,.

7. No rounding is required since the bottom two digits in shifting (steps 2
and 6) were 0 (note: see Guard, Sticky, and Round bits in the literature).

8. No overflow. The resultant exponent is 𝐸0 = 𝑒0 + 𝑒!$% = 3 = 011,. The
significand is 𝑀0 = 11, (drop the implicit top bit). Packing them, the final
answer is 01111,, which in the small FP system represents 1.75.

37/47

FP arithmetic ops.: multiply
For multiplication we also simplify and take two positive normalized precision-
𝑝 FP numbers 𝑥 = 2&.×𝑚% and 𝑦 = 2&/×𝑚- (we drop the extra factors of
2'()* to simplify). Multiplication of those numbers shows that exponents
need to be added while the significands multiplied: 2&.×𝑚%×2&/×𝑚- =
2&.)&/×𝑚%×𝑚-.

1. Multiply the integer significands: 𝑚0 = 𝑚%×𝑚-. This requires 2𝑝 bits to
store.

2. Add the exponents (here we assume the exponent bias of 𝑒!$% as in IEEE
754): 𝑒0 = 𝑒% + 𝑒- = 𝐸% − 𝑒!$% + 𝐸- − 𝑒!$%. Since the binary encoding
of the exponent does not include the bias, 𝐸0 = 𝐸% + 𝐸- − 𝑒!$%.

3. Since 2('* ≤ 𝑚%, 𝑚- < 2(, we have 2,(', ≤ 𝑚0 < 2,(. If 2,('* ≤ 𝑚0
shift 𝑚0 right by one step and increase the exponent by one (normalize).

38/47

FP arithmetic ops.: multiply

4. Perform rounding of 𝑚0 to fit it into the precision-𝑝 (after the
normalization it is stored in 2𝑝 − 1 bits and we need the top 𝑝 bits for the
result).

5. If no exceptions occur (such as overflow or underflow) then we have the
final answer ∘ 𝑥×𝑦 = 2&0×𝑚0.

A few things worth noting.
• We do not handle any exceptions here: for example, the exponent can

become higher than the maximum exponent after steps 2 or 3, which
would mean overflow. Similarly, after step 2 we might find that the
resultant exponent is smaller than 𝑒!"# which would cause an underflow.

• See HFPA18 and DA04 for further details.

39/47

FP multiplication example

• Again consider a small unsigned FP system with 𝛽 = 2, 𝑝 = 3, 𝑒!"# = −2,
𝑒!$% = 3.

• The encoding is .

• Take 𝑥 = 0.25 (001002) and 𝑦 = 1.5(011102).
• Here 𝑒% = −2, 𝑚% = 100, (implicit 1 attached), 𝑒- = 0, 𝑚- = 110,.

Go through the steps of the FP multiplication algorithm:
1. Multiply the significands: 𝑚0 = 𝑚%×𝑚- = 011000,.

2. Add the exponents: 𝑒% + 𝑒- = −2.

𝐸

𝑀

40/47

FP multiplication example

3. Since 𝑚0 < 2,('* = 21, no normalization is required. Drop the top bit
(zero) to get 𝑚0 = 11000,.

4. Round and obtain the top 𝑝 = 3 bits: 𝑚0 = 110, (in this case there is no
rounding error since the bottom bits were zero).

5. Here 𝐸0 = 𝑒0 + 𝑒!$% = 1 = 001,, and 𝑀0 = 10, (remove the implicit
top bit). Packing them together the final answer of the multiplication is
00110,, which in the small FP system represents 0.375.

41/47

Measuring accuracy

• We talked about precision, but how about accuracy?
• Precision usually refers to the number of bits in a numerical format or the

number of bits in the fractional part of the numerical format.
• Accuracy is a measure of how well an algorithm utilizes a given numerical

precision to represent some output when compared to some ideal
algorithm using the same or higher precision data type.

• In other words, how well does it set up the bits in a data type to minimize
the numerical error?

• While the basic arithmetic operations in some IEEE 754-compliant
arithmetic have the maximum possible accuracy due to correct rounding, it
might not always be the case.

• We look into how to measure the accuracy of FP results.

42/47

Measuring accuracy

• To measure accuracy of FP arithmetic operations or functions, we go back
to the concept of the unit of least precision (ulp).

• First of all, we need to pick some reference for making the
comparison when measuring accuracy.

• For example, if we want to develop an approximation to 𝑒! in
binary32 arithmetic, say 𝑒"

!. , we should have an approximation of it
in some higher precision arithmetic (𝑒#

!/).
• We then do (possibly for all possible inputs):

1. Evaluate the exponential in higher precision (𝑦0 = 𝑒0
%&) and in binary32

(𝑦1 = 𝑒1
%'), by ensuring that 𝑥1 = 𝑥0 to avoid introducing errors in the input.

2. Convert 𝑦0 to binary32 (N𝑦0) and compute +
&
ulp N𝑦0 = ℎ.

43/47

Measuring accuracy

3. Then, if 𝑦0 − ℎ ≤ 𝑦1 ≤ 𝑦0 + ℎ, we declare that the accuracy of our binary32
exponential is within 0.5ulp (a closest possible binary32 answer is always
returned).

4. Otherwise, ℎ = 2ℎ and ℎ = ℎ + ulp N𝑦0 thereafter, and each time we repeat
step 3, and similarly declare that the accuracy is within 1ulp, 2ulp, 3ulp, …
once we find that 𝑦1 lies within the given range.

There is a complication that the sizes of ulp change around the powers of 2
(see the axis of numbers in the small FP system shown previously)—not shown
here for simplicity, but this has to be taken into account if c𝑦0 is a power of 2 or
if, in step 3, one of the bounds crosses a power of 2.

44/47

Measuring accuracy

• A few interesting examples using ulp in binary32. If an approximation to 𝑥
evaluates to 1, then the accuracy is 0.5ulp, if 𝐴 it’s 1ulp, if 𝐵 it’s 3ulps, and if
𝐶 it’s 7ulps.

• The size of ulp around 𝑦 is quite big, it is 1, but if, for example, 8388608 is an
approximation to 𝑦, then we are still accurate to 0.5ulp.

45/47

Measuring accuracy

A few things worth noting.
• Note that all calculations in this type of error analysis have to be done in

higher precision than the target (target precision was in this case
binary32).

• You will notice that the resultant error is an error bound rather than an
actual numerical error. This is usually sufficient and is much easier to
disseminate—if we claim that our developed library is returning answers
within 0.5ulp that is sufficient to inform the readers that it is correctly
rounded without plotting all the values of errors.

• Measuring in ulps is most common in computer arithmetic literature and
some software documentation, for example see GNU GCC:
https://www.gnu.org/software/libc/manual/html_node/Errors-in-Math-
Functions.html.

https://www.gnu.org/software/libc/manual/html_node/Errors-in-Math-Functions.html

46/47

Rounding error analysis

• If we know the error bounds of various basic operations, such as IEEE 754
arithmetic, then we can perform rounding error analysis of algorithms that
utilize them to analyse error accumulation and other effects.

• Rounding error analysis allows us to derive worst case error bounds, which
evaluates the numerical behaviour of the algorithms in general rather than
specific cases.

• This is in contrast with running an algorithm many times with a set of data
points and observing the errors—usually we cannot cover the whole input
space in order to detect the worst case errors.

• Rounding error analysis is done on paper, and, if we can make assumptions
about the accuracy of basic operations, does not require a computer.

• Usually the bounds are tested by a few numerical experiments.

47/47

Rounding error analysis

For FP arithmetic, one standard model is as follows. We assume IEEE 754
arithmetic with round-to-nearest, and denote rounding to floating-point with
gl(𝑥).

Given FP numbers 𝑥, 𝑦 ∈ ℱ,

gl 𝑥 op 𝑦 = 𝑥 op 𝑦 1 + 𝛿 , |𝛿| ≤ 𝑢, op ∈ {+,−,×,/}.

Here 𝑢 = 2'(, for a precision-𝑝 FP arithmetic, is called the unit roundoff.

Square root and the FMA can be expressed similarly. Analysis using this model
is out of scope here—those interested, see ASNA02 for many examples.

48/47

Acknowledgements

We are grateful to Massimiliano Fasi and Nicholas J. Higham for their
comments on the early drafts of these slides.

