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Our position in the module
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Some remarks

The presented material is based on Chapter 5 of Operating System
Concepts, 10th ed. by A. Silberschatz, P. B. Galvin and G. Gagne [1].

For these slides we have used images and text from some of the slides
provided by the above authors [2] as well as from the 10th of edition of
OSC [1].

Recommended reading this week: [1, Ch. 5] (OSC), [3, Ch. 7] (XV6),
[4, Ch. 7–10] (OSTEP).

Mid-module survey
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Objectives

To introduce CPU scheduling, which is the basis for
multiprogrammed operating systems.

To describe various CPU-scheduling algorithms and understand
pros and cons of each.

To discuss evaluation criteria for selecting a CPU-scheduling
algorithm for a particular system.

To understand challenges with scheduling in multiprocessor and
real-time systems.
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A General Problem

We are going to look at schedul-
ing in operating systems, but it is
a general problem (see week 7 lab
thought exercise).

“So what to do, and when, and in
what order? Your life is waiting.”

From Algorithms to Live By,
Chapter 5 on Scheduling.
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Why CPUs need scheduling?
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Why CPUs need scheduling?

Processes go through
multiple phases of CPU-IO
over their lifetime.

Maximum CPU utilization
through
multiprogramming.

When processes wait for IO,
CPU can be used for
something.

What to run next? There is
a need for scheduling.
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Typical CPU Burst Lengths

Usually many short and a few long CPU bursts.
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CPU Scheduler

CPU utilization

When CPU becomes idle, OS finds work (waiting process queue).

CPU scheduler selects a process from the ready queue and allocates
CPU to it.

Queue may be ordered in various ways.

CPU scheduling decisions may take place when a process changes
state:

1 running → waiting,
2 running → ready,
3 waiting → ready,
4 terminates.

For 1 and 4, scheduling is nonpreemptive (run as long as needed)
while for 2 and 3 preemptive (may interrupt a running process).
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Challenges with Preemptive Scheduling

A few scenarios that cause problems:

1 Process 1 is writing data, is preempted by process 2 that reads the
same data.

2 Process 1 asks kernel to do some important changes, process 2
interrupts while they are being done.

Disabling interrupts

Irrespective of the challenges, most modern operating systems are fully
preemptive when running in kernel mode, but disable interrupts on certain
small areas of code.
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Dispatcher

Dispatcher gives control of the CPU to the scheduled process.

Switching context.

Switching to user mode (kernel tasks in supervisor mode).

Jumping to the proper location in the previously interrupted user
program (set the Program Counter register).

Dispatch latency

Time it takes for the dispatcher to stop one process and start another
running.
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Scheduling Criteria

CPU utilization—reduce amount of time CPU is idle.

Throughput—number of processes completed per time unit.

Turnaround time—amount of time to execute a particular process.

Waiting time—amount of time a process has been waiting in the
ready queue.

Response time—amount of time it takes from when a request was
submitted until the first response is produced, not output (for
time-sharing environment).

When designing a scheduler

It is desirable to maximize CPU utilization and throughput and to
minimize turnaround time, waiting time, and response time.
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First-Come, First-Served (FCFS) Scheduling

Process Burst time

P1 24
P2 3
P3 3

If processes arrive in sequence we have the following schedule:

P P P1 2 3

0 24 3027

Waiting time for P1 = 0, P2 = 24, and P3 = 27.

Average waiting time: 0+24+27
3 = 17.
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First-Come, First-Served (FCFS) Scheduling

If processes arrive instead as P2, P3, P1:

P1
0 3 6 30

P2 P3

Waiting time for P1 = 6, P2 = 0, and P3 = 3.

Average waiting time: 6+0+3
3 = 3.

Substantial reduction from the previous case but in general not good.

Issue with FCFS

Convoy effect—short jobs can be held waiting by long jobs.

Note that FCFS is nonpreemptive.
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Questions?

“there’s nothing so fatiguing
as the eternal hanging of an
uncompleted task,”

William James. From Algo-
rithms to Live By, Chapter 5 on
Scheduling.
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Shortest-Job-First (SJF)

Append each process with the length of next CPU burst.

Schedule jobs with shortest time.

SJF is optimal, but difficult to know future CPU burst lengths.

Ties broken with FCFS scheduling.

Better name shortest-next-CPU-burst.

Process Next burst time

P1 6
P2 8
P3 7
P4 3

P3
0 3 24

P4 P1
169

P2

Average waiting time: 3+16+9+0
4 = 7.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2022 16 / 58



Predicting Lengths of Future CPU Bursts

Make an assumption

Next CPU burst likely similar to the past bursts.

tn—actual length of the CPU burst n.

τn+1—predicted value of the next burst.

0 ≤ α ≤ 1.

τn+1 = αtn + (1− α)τn.

We can tune this model through α (usually set to 0.5).
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Example Prediction of CPU Bursts

6 4 6 4 13 13 13 …
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Predicting Lengths of Future CPU Bursts

Model of CPU Burst Lengths

τn+1 = αtn + (1− α)τn

α = 0, τn+1 = τn—recent history does not count.

α = 1, τn+1 = tn—only the actual last CPU burst counts.

Expand the formula:
τn+1 = αtn +(1−α)αtn−1+ · · ·+(1−α)jαtn−j + · · ·+(1−α)n+1τ0.

Example: α = 0.5, τ4 = 0.5t3 + 0.25t2 + 0.125t1 + 0.0625τ0.

Exponential average of past CPU bursts

Each successive term has lower weighting than the newer ones, with the
initial guess having the lowest.
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Shortest-remaining-time-first

If we allow SJF to be preemptive, it can interrupt a currently running
process if it would run longer than some new process.

Consider

Process Arrival time Next burst time

P1 0 8
P2 1 4
P3 2 9
P4 3 5

P4
0 1 26

P1 P2
10

P3P1
5 17

Average waiting time is 6.5—standard SJF would result in 7.75.
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Shortest-remaining-time-first (Question, 3min)

Take 3 minutes to schedule the following processes with a preemptive
shortest-job-first scheduler. Feel free to discuss with your peers.
Volunteers for the solution welcome at the end.

Process Arrival time Next burst time

P1 0 8
P2 1 9
P3 2 7
P4 3 2
P5 4 3
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Shortest-remaining-time-first (Question, 3min)

Take 3 minutes to schedule the following processes with a preemptive
shortest-job-first scheduler. Feel free to discuss with your peers.
Volunteers for the solution welcome at the end.

Process Arrival time Next burst time

P1 0 8
P2 1 9
P3 2 7
P4 3 2
P5 4 3

Answer

P1 runs 0 to 3; P4 interrupts, runs 3 to 5; P5 runs 5 to 8; P1 continues,
runs 8 to 13; P3 then runs; finally P2 is run.
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Priority Scheduling

Priority scheduling

Shortest-job-first is a specific case of general scheduler that decides by
priorities.

A priority (integer) associated with each process.

CPU allocated to a process of highest priority.

Starvation—low priority processes may not execute.

Aging—increase the priority proportional to waiting time.

Internal priorities—time limits, memory requirements, ratio of
average I/O burst.

External priorities—importance of the process, type and amount of
funds being paid for the CPUs, who is asking to run the process, and
other.
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Priority Scheduling

Process Burst time Priority

P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

Preemptive priority scheduling

Priorities may change while a process is running.
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Questions?

“they wrote up a fix and beamed
the new code across millions
of miles to Pathfinder. What
was the solution they sent flying
across the solar system? Priority
inheritance.”

From Algorithms to Live By,
Chapter 5 on Scheduling.
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Round Robin (RR) Scheduling

Time quantum (q) is defined.

CPU scheduler assigns the CPU to each process for an interval of up
to 1 quantum.

Queue treated as First-In-First-Out.

Interrupts every quantum to schedule next process.

RR is therefore preemptive.

No process allocated for more than q in a row (unless there is only
one).
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Round Robin (RR) Scheduling

If there are n processes waiting, each process is guaranteed to get 1/n
of CPUs time in chunks of time quantum q.

Each process must wait no longer than (n− 1)× q time units until its
next turn to run.
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Round Robin (RR) Scheduling

Take q = 4.

Process Burst time

P1 24
P2 3
P3 3

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1

Small quantum—too many interrupts will reduce performance.

Big quantum—scheduler similar to FCFS.

Need a balance (according to OSC, usually q = 10 to 100 ms).

Context switch around 10 microseconds (small fraction of q).
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Round Robin (RR) Scheduling
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Round Robin (RR) Scheduling

Turnaround time depends
on the size of the quantum.

However, it does not
necessarily improve with the
size of q.

Rule of Thumb

80% of CPU bursts should be
shorter than q.
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Round Robin (RR) Scheduling (Question, 3min)

Take 3 minutes to schedule the following process queue with a round
robin scheduler with q = 3. Feel free to discuss with your peers.
Volunteers for the solution welcome at the end.

Process Burst time

P1 5
P2 12
P3 3
P4 1

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2022 31 / 58



Round Robin (RR) Scheduling (Question, 3min)

Take 3 minutes to schedule the following process queue with a round
robin scheduler with q = 3. Feel free to discuss with your peers.
Volunteers for the solution welcome at the end.

Process Burst time

P1 5
P2 12
P3 3
P4 1

Answer

P1 runs 0 to 3; P2 runs 3 to 6; P3 runs 6 to 9; P4 runs 9 to 10; P1 runs
10 to 12; P2 runs 12 to 15; P2 15 to 18; P2 runs 18 to 21.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2022 32 / 58



Multilevel Queue Scheduling

With previous algorithms, it takes O(n) to search the queue.

Assign processes to different queues, by priority.

Can also assign to queues by process types:
1 Queue for background processes (for example, batch processing)
2 Queue for foreground processes (interactive)

Each queue can have different scheduling algorithms, depending on
needs.

Scheduling may be required among queues: commonly fixed-priority
preemptive scheduling.
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Multilevel Queue Scheduling

Example queues in decreasing priority level:

1 Real-time precesses

2 System processes

3 Interactive processes

4 Batch processes

Multilevel priority queue

No process in a lower priority queue runs while there are processes waiting
in the higher priority queues. High priority queues preempt lower priority
ones.

Time slicing

Another possibility is to allocate time among queues. Example: 80% to
foreground queue and 20% to the background queue.
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Multilevel Feedback Queue Scheduling

Dynamic queueing

Instead of fixing processes to queues, allow them to move.

Multilevel feedback queue defined by

number of queues,

a scheduling alg. for each queue,

a method to upgrade a process to higher priority queue,

a method to downgrade a process, and

a method to determine which queue to assign process at the start.

Multilevel feedback queue

Most general CPU scheduling algorithm due to many parameters in the
definition.
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Multilevel Feedback Queue Scheduling (Example)

Three queues (from the top):

Q0—RR with q = 8 ms.

Q1—RR with q = 16 ms.

Q2—FCFS.

Scheduling:

1 A new job enters Q0 and
gets 8 ms.

2 Not finished in 8 ms—move
to Q1.

3 Not finished in queue 1 in
another 16 ms—move to
Q2.

4 Scheduled in FCFS in Q2
when queue 0 and 1 empty.

Starvation in Q2

To prevent starvation we may
move old processes to Q0/1.
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Advantages and Disadvantages of Scheduling Algorithms

Algorithm (dis)advantages

FCFS Convoy effect a problem—long jobs hold the queue.
SJF Need to predict future CPU burst lengths.
Preemptive SJF Better average waiting time than SJF.
Priority scheduler Starvation.
RR Need to tune time quantum to avoid expensive con-

text switch.
Multilevel queue Faster search than O(n).
Multilevel feedback queue Configuration can be expensive. Starvation.

Practice

There is no perfect algorithm for all cases. It is a tradeoff based on
requirements of the system and usually a combination of scheduling
algorithms is implemented (See OSC OS examples [1, Sec. 5.7]).
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Questions?

“In fact, the weighted version of
Shortest Processing Time is a
pretty good candidate for best
general-purpose scheduling strat-
egy in the face of uncertainty.”

From Algorithms to Live By,
Chapter 5 on Scheduling.
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Multi-Processor Scheduling

Traditionally term multi-processor referred to systems with multiple
physical cores. Now we use it to describe systems with either several
physical or virtual cores/threads.

One approach to scheduling is to have one master processor handling
scheduling (assymetric multiprocessing). Master becomes potential
bottleneck.

Another is symmetric multiprocessing (SMP)—each processor handles
its scheduling. Most common (Windonws, Linux, macOS, Android, iOS).
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Multi-Processor Scheduling: SMP

Two approaches in SMP

1) Common ready queue—each processor takes processes/threads from
that queue (potential clashes). 2) Each processor has its own queue.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2022 40 / 58



Multicore Processors

Relatively recent trend is to place multiple cores on chip (multicore).

Speed and energy efficiency.

Memory stall—cores spend significant amount of time for memory
(since these days cores are much faster than memory).

Multithreading—hardware assisted mutliple threads per core.

When one thread is in memory stall, work on another.

OS sees different hardware threads as separate CPUs.
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Multicore Processors: Two Levels of Scheduling
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Load balancing

With SMP we need to utilize all CPUs efficiently.

Load balancing attempts even distribution.

Only necessary on systems with separate queues for each CPU.

Push migration—a task checks the load on each CPU and moves
threads from CPU to CPU to avoid imbalance.

Pull migration—idle processor pulls waiting tasks from busy
processors.
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Processor Affinity

When a thread runs a processor, the cache is “warmed up” for that
thread.

We say that a task has affinity for the processor it’s running on.

When a task is moved, say due to load balancing, we have a big
overhead in terms of cache.

Invalidating and repopulating caches is expensive.

Soft affinity—OS will attempt to keep the process on the same core,
but load balancing can move it.

Hard affinity—processes specify a list of processes on which to run.

Usually both methods are available.

Implications on scheduling

Load balancing and processor affinity both may have implications on
scheduling.
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Questions?

“the Linux core team, several
years ago, replaced their scheduler
with one that was less “smart”
about calculating process priori-
ties but more than made up for
it by taking less time to calculate
them.”

From Algorithms to Live By,
Chapter 5 on Scheduling.
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Real-Time CPU Scheduling

Real-time systems categorized into two:
1 Soft real-time: guarantee preference for critical processes.
2 Hard real-time: guarantee completion by deadline.

Two types of latencies affect performance:
1 Interrupt latency: time from arrival to interrupt service routine.
2 Dispatch latency: time for dispatcher to stop current process and

start another.

Hard real-time systems

Various latencies should be bounded to meet the strict requirements of
these systems.
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Real-Time CPU Scheduling
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Real-Time CPU Scheduling

response to event

real-time 
process 

execution

event

conflicts

time

dispatch 

response interval

dispatch latency

process made 
availableinterrupt 

processing
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Priority-Based Scheduling

Real-time systems

It is essential to have a priority-based preemptive scheduling for real-time
systems. Usually real-time processes have highest priority.

Priority-based preemptive scheduling gives us soft real-time functionality.

Additional scheduling features required for hard real-time.

Some definitions:

Processes are periodic—require CPU at constant intervals.

Processing time t, deadline d , period p. Here 0 ≤ t ≤ d ≤ p.

Admission control

Schedulers take advantage of these details and assign priorities based on
deadlines and period. Admission control algorithm may reject the
request as impossible to service by the required deadline.
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Priority-Based Scheduling
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Rate-Monotonic Scheduling

Upon entering the system, each periodic task assigned priority ∝ 1
p .

Rationale: prioritize processes that require CPU more often.

Example:

Process p t d

P1 50 20 50
P2 100 35 100

P1 has higher priority since the period is shorter.

Rate-monotonic scheduler:
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Rate-Monotonic Scheduling

Now we make the requirements more strict for P2:

Process p t d

P1 50 25 50
P2 80 35 80

P1 has higher priority since the period is shorter.

Rate-monotonic scheduler:

P2 failed to complete by d = 80! The total CPU utilization is
25/50 + 35/80 = 0.94, but the problem was that the scheduler starts P1

again before P2 completes.
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Earliest-Deadline-First Scheduling

I think you have been using this one in the past weeks! ,

Priorities not fixed in advance—the earlier the deadline, the higher priority.

At time 50 process P2 is not preempted by P1 because its next deadline
(80) is earlier than process P1’s next deadline at time 100.

EDF Scheduling

No requirement of the period, just the deadline, therefore processes do not
need to be periodic as with rate-monotonic scheduling.
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Earliest-Deadline-First Scheduling (Question, 5min)

Take 5 minutes to schedule the following process queue with a
Earliest-Deadline-First Scheduling. Feel free to discuss with your peers.
Volunteers for the solution welcome at the end.

Process p t d

P1 50 30 50
P2 70 40 70

Don’t forget the aforementioned admission control.
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Earliest-Deadline-First Scheduling (Question, 5min)

Take 5 minutes to schedule the following process queue with a
Earliest-Deadline-First Scheduling. Feel free to discuss with your peers.
Volunteers for the solution welcome at the end.

Process p t d

P1 50 30 50
P2 70 40 70

0 30

P1, P2 P1

70
P1 P2

P2 P1

P1
100 140

P2

P2 P1

150
P1
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Scheduling in XV6

Scheduling occurs in two situations:

Running process runs sleep or wait.

XV6 periodically forces scheduling (round-robin with quantum of
∼ 100 ms).

Scheduler exists as a separate thread per CPU.

Queue of up to 64 processes available.

See kernel/proc.c for further detail. Scheduler in the function
void scheduler(void).
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Questions?

“there’s no choice but to treat
that unimportant thing as being
every bit as important as what-
ever it’s blocking.”

From Algorithms to Live By,
Chapter 5 on Scheduling.
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Conclusion

We have learned fundamentals of CPU scheduling.

Please study the recommended reading materials, especially OSC.

Check the past exam papers
(https://students.leeds.ac.uk/exampapers).

Martin and me usually available online and on-site (office open hours
Mon. 11-12) for questions.

Next week: Martin is back with security in OS.

Coursework (20%) deadline 30th of November, 14:30.

Mid-module survey
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