
COMP2211 Operating Systems
Combined slides

Mantas Mikaitis

School of Computer Science, University of Leeds, Leeds, UK

Semester 1, 2024/25

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 1 / 407

Objectives

To introduce the structure of COMP2211.

Talk about the coursework and exam.

Describe organisation of a computer system and interrupts.

Discuss the components in a modern multiprocessor system.

Introduce user mode and kernel mode.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 2 / 407

Part I: Introduction to the Module

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 3 / 407

Structure of COMP2211: Staff

Mantas Mikaitis (me)

Tom Richardson

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 4 / 407

Structure of COMP2211: Lectures

Week Topic

1 (current) Introduction to OS

2 OS services
3 Processes
4 Xv6: Live coding and Q&A from the xv6 book
5 Reading week. No scheduled labs or lectures
6 Threads and concurrency. Assignment due this week.
7 Scheduling
8 Process synchronisation
9 Memory management
10 Catch up
11 Module review

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 5 / 407

Structure of COMP2211: Times and Places

Lectures Mon @ 2pm, Thu @ 12pm in Michael Sadler RBLT (LG.X04).

Labs Mon-Tue-Thu-Fri in Bragg 2.05.

You will find one of the lab slots in your timetable.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 6 / 407

Structure of COMP2211: Reading List

We will be mainly using the Operating System Concepts (OSC) 10th ed., 2018, and the 3rd
edition of the xv6 book (XV6), 2022. These slides are based on OSC (see the reference list).

Week Reading materials

1 (current) Chapter 1 OSC. Chapter 1 XV6.

2 Chapter 2 OSC. Chapter 2 XV6.
3 Chapter 3 OSC.
4 Reread Chapters 1–2 XV6.
5 Reread Chapters 1–3 OSC.
6 Chapter 4 OSC.
7 Chapter 5 OSC.
8 Chapter 6 OSC.
9 Chapters 9–10 OSC. Chapter 3 XV6.
10 Reread Chapters 4–6 OSC.
11 Reread Chapters 9–10 OSC.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 7 / 407

Structure of COMP2211: Laboratories

Laboratories will be in C and Bash.

Download the lab manual from
Minerva.

Weeks 1–3 contain introduction to
xv6 operating system.

Weeks 4–6: you will work on a 40%
assignment.

Weeks 7–11 contain further formative
assessment exercises.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 8 / 407

Structure of COMP2211: Xv6 operating system

XV6 is a small teaching operating
system from MIT.

The source code is readable and
editable.

It runs on RISC-V architectures.

To run it on Intel/AMD CPUs we
emulate RISC-V with qemu.

It is written in C (94.4%) with some
RISC-V assembly (3.4%).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 9 / 407

Structure of COMP2211: Xv6 operating system

We use it by entering commands,
similarly as with the Unix machines in
the 2.05 lab, but more limited.

The command line interpreter
recognizes bash commands.

In the labs you will extend your copy
of xv6 to have more commands.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 10 / 407

Structure of COMP2211: Programming languages

Mainly C.

A lot of character handling.

Pointers and double pointers.

Arrays of characters and strings.

Dynamic memory allocation.

Xv6 specific process creation and
command execution.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 11 / 407

Structure of COMP2211: Vevox

We will be using Vevox in the lectures a lot, to do quizzes.

Let’s try it.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 12 / 407

Structure of COMP2211: Assessment

Deadline 2pm Nov. 7 (W6): 40% module mark

Task: write your own command line interpreter (Shell) for xv6 that can perform various
commands, such as ls or cd, redirect standard output to files, and other advanced features.

The formative exercises on weeks 1–3 and reading of Chapters 1–2 of the xv6 book are
essential for this assignment.

The assignment will be automatically marked on Gradescope by running a set of
commands and checking whether the output from the submitted shell is as expected.

January paper-based 2-hour exam: 60% module mark

Reading lecture slides and OSC is essential to succeed. Engaging with laboratory material can
also help mastering the learning outcomes.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 13 / 407

Structure of COMP2211: Communication and feedback

Please email me with your questions.

Ask staff in the lab, who can forward me questions/comments without revealing your
identity.

Feedback: informal mid-module and formal end-of-module surveys.

Feedback welcome

Feel free to leave me feedback after lectures and labs and I will try to implement changes as
we go along. For example, tell me: present slower, explain a specific topic again or differently,
supply slides in different colour theme, do less/more quizzes, discuss this piece of code in class,
...

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 14 / 407

Structure of COMP2211: Connection between labs and lectures?

Lectures cover general OS concepts.

Laboratories focus on xv6, which has used some of those concepts.

Do not look for every concept from the lectures to be in xv6.

You will notice the theory being of use in your further studies, interviews, placements,
graduate roles, other modules, ...

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 15 / 407

Structure of COMP2211: What is in the exam?

All topics addressed in the lectures can appear in the January exam. Material appearing in the
lectures is examinable based on the OSC contents of appropriate Chapters/Sections.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 16 / 407

Structure of COMP2211: Quiz (5 minutes)

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 17 / 407

Part II: Introduction to Operating Systems

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 18 / 407

Operating Systems: Main Definitions

A computer system can be divided into four components:

Hardware

Operating system

Application programs

User

OS is a resource allocator

Hardware (CPU, memory, mouse, keyboard, ...) are resources. Multiple applications running
on the system compete for them. Operating System coordinates hardware use among users
and applications.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 19 / 407

Operating Systems: Main Definitions

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 20 / 407

Operating Systems: Main Definitions

User view:

Laptop or PC that consists of monitor, keyboard, mouse.

One user that wants to use all of the resources.

OS designed for ease of use rather than resource utilization.

Many users interact with mobile devices: touch screen, voice recognization.

Embedded systems

Some computers have little or no user view: home appliances, various devices in cars, and
other specialized computers that almost work on their own.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 21 / 407

Operating Systems: Main Definitions

System view:

Resource allocator, involved with hardware intimately.

Manages CPU time, memory space, storage space, I/O access.

Faces several requests—has to decide who gets the resources and who waits (users,
applications).

Responsible for overall efficient operation of the system.

Control program

Different view of OS. Manages the control of programs to prevent errors and improper use of
the hardware.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 22 / 407

Operating Systems: Main Definitions

Operating systems arose due to the growth of complexity of computer hardware.

Moore’s Law correctly predicted in the 1960s that the number of transistors on an integrated
circuit would double every 18 months.

The size shrank and the functionality has grown—now the uses are very varied and OS is
essential to manage the complexity.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 23 / 407

Operating Systems: Main Definitions

Source: https://en.wikipedia.org/wiki/Moore’s_lawM. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 24 / 407

https://en.wikipedia.org/wiki/Moore's_law

Operating Systems: Main Definitions

A common definition of operating systems is that it is the one program that always runs, a
kernel. Alongside are system programs, associated with OS but not part of kernel, and
application programs.

Novadays OS includes many things outside the immediate definition of what the OS does:
browsers, photo viewers, word processors, ...

Operating System

A kernel (always running).

Middleware frameworks that allow development of applications.

System programs that aid in various OS tasks.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 25 / 407

Structure of COMP2211: Discussion with peers (5 minutes)

Consider the main components of a computer system below, again. Discuss with your peers
how each of those would look in a washing machine system: User interaction? Applications?
OS? Hardware resources? Programming them?

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 26 / 407

Part III: Concept of Interrupts

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 27 / 407

Computer-System Organization

Many devices competing for memory access.

OS uses device drivers to talk to various controllers.

Memory has a memory controller which also does some managing to keep up with many
reads and writes at once.

We now go deeper into various concepts within this system.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 28 / 407

Interrupts

Consider a series of events within the system when we press a key on a keyboard. This
constitutes input/output (I/O).

1 Device driver writes to appropriate registers (memory locations) in the device controller.

2 The controller reads to see what needs to be done (e.g. read a character from the
keyboard).

3 Controller starts transfer of data from the keyboard.

4 Controller informs the driver that a transfer has been done.

5 Driver gives control to OS, to read the data.

How does the controller inform the driver (CPU) that it has finished an operation? Through
an interrupt.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 29 / 407

Interrupts

Hardware may trigger interrupts at CPU at any time.

CPU then stops what it is doing and checks if it can service the interrupt, through the
interrupt service routine.

When serviced, CPU goes back to what it was doing.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 30 / 407

Interrupts

CPU may need to store the current program counter, for example into the link register
or stack—to get back to what it was doing before the interrupt.

The interrupt routine has to save any CPU state that it will be changing, and return it
back to what it was once finished.

Once done, the program counter and the original program execution continue.

Program Counter (PC) register

Stores the address of the next instruction that the CPU will execute.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 31 / 407

Interrupts

device driver initiates I/O

CPU receiving interrupt,
transfers control to
interrupt handler

CPU resumes
processing of

interrupted task

CPU

1

I/O controller

CPU executing checks for
interrupts between instructions

5

interrupt handler
processes data,

returns from interrupt

initiates I/O

3

2

4

7

input ready, output
complete, or error

generates interrupt signal

6

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 32 / 407

Interrupts

Requirements for an effecting interrupt system:

Capability to defer interrupts when something more important is being done on CPU.

Efficient way to service interrupts—can’t take too long to respond.

Structure of high and low priority interrupts.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 33 / 407

Interrupts: Advanced Material

When interrupt occurs, correct interrupt service routine needs to be discovered.

There can be hundreds to search through, but we need to be fast.

Instead of searching, a table of pointers to interrupt service routines can be used:
interrupt vector.

A unique ID on interrupts is indexing this vector, which sends CPU straight to the correct
interrupt service routine.

Interrupt state save and restore

Assume that an interrupt service routine for keyboard input interrupt is using CPU registers
R1–R7 for internal operations. Before doing anything, R1 to R7 have to be stored in memory
(pushed to stack), and once the interrupt is finished, they should be restored. If this is not
done, the CPU will return to its previous state but will potentially crash because the carpet
was moved from under its feet—the registers suddenly changed!

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 34 / 407

Interrupts: Advanced Material

In reality, the vectors get too big and a hybrid approach is used, interrupt chaining.

Interrupt routines point to the next interrupt routine: we loop through them until the
right one is found.

Nonmaskable interrupts: unrecoverable errors, such as memory read/write faults.

Maskable interrupts: CPU can turn these off before starting some critical code section.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 35 / 407

Interrupts: Intel processor event-vector table

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 36 / 407

Interrupts: Common Terms

Raise an interrupt: ask CPU to stop what it is doing and do something for me.

Catch an interrupt: CPU discovers someone wants processing time.

Dispatch the interrupt: call interrupt handler.

Clear the interrupt: call the correct interrupt service routine.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 37 / 407

Interrupts: Vevox quiz (5 minutes)

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 38 / 407

Part IV: Storage and Memory

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 39 / 407

Storage Structure

CPU can only load instructions from memory.

Programs therefore must be loaded into memory to run.

Usually programs loaded to random-access memory (RAM).

Computers use other memory as well. Since RAM is volatile (contents lost when power is
off) we cannot trust it to hold for example the bootstrap program, which runs on power
on.

Read-only EEPROM memory—slow and rarely changed memory that preserves contents
on power off.

Iphones for example use EEPROM to store serial numbers and other hardware
information.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 40 / 407

Storage Structure: Reminder of Units

A bit is a basic unit of storage. A byte is 8 bits.

A word is one or more bytes, varies between computer architectures. Register width and
instruction size usually constitutes how large is a word.

Kilobytes, megabytes, gigabytes, terabytes, petabytes, ...

Or in fact, correct International Organization for Standardization (ISO) binary prefixes
adopted in 2008 are:

Kibibytes, mebibytes, gibibytes, tebibytes, pebibytes, ...

1024, 10243, ... bytes.
M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 41 / 407

Storage Structure

Memory is laid out in arrays of bytes, which have addresses.

CPU interacts with memory by load and store instructions addressing specific bytes or
words.

Bytes or words are moved between the CPU registers and the memory.

Similarly, CPU loads instructions from memory automatically, addressed by the program
counter.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 42 / 407

Storage Structure

You may have heard about von Neumann architecture.

Instruction-execution cycle: fetch instruction, execute, repeat.

First CPU fetches an instruction from a program in memory, to an instruction register.

Then it decodes the instruction and executes it in the hardware.

The result may be stored back in memory.

Main memory

Ideally we would like the programs and data to be in fast RAM memory. This is not possible
due to volatility of the memory and relatively small size.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 43 / 407

Storage Structure: Secondary storage

Data is stored in secondary storage, which preserves programs and data while the system is off.

Hard-disk drives (HDD).

Nonvolatile memory (NVM) devices.

Other storage

CDs, cache, Blu-ray disks, magnetic tapes, ...

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 44 / 407

Storage Structure: Hierarchy

Operating Systems have to balance all of these storage types for the whole system to work
efficiently and reliably.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 45 / 407

I/O Structure

Interrupt driven memory access is fine for small requests, but moving a lot of data will not
work very well.

Direct Memory Acces (DMA) is used to offload work from the CPU.

Device controller directly transfers data to and from the device and main memory, without
holding the CPU while doing so.

One interrupt is generated per transfer, to tell the device driver that the operation has
completed. Better than interrupt for every byte.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 46 / 407

I/O Structure: Direct Memory Access

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 47 / 407

Part V: Single and Multi-processor Systems

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 48 / 407

Single-Processor Systems

Single processor containing one CPU with a single processing core - many years ago.

The core is the main piece of hardware within a CPU that executed program instructions and
managed register storage locally.

General purpose or domain specific: can run general programs or can run a limited set of
operations optimized for some task/s.

A computer system may have one general purpose single-processor CPU and multiple
domain-specific processors that accelerate some specific tasks. From the perspective of OS,
this system is still a single processor.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 49 / 407

Multiprocessor Systems

Multiprocessor systems dominate the computer landscape novadays.

Two or more processors, each with a single-core CPU.

The main goal is to increase throughput—how much work can we do in a certain amount of
time.

Ideally N processors should result in N times speed up. In reality it is less: there is some
overhead in managing multiple processors that cooperate on some task. This overhead does
not exist when only one processor is executing.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 50 / 407

Symmetric multiprocessing (SMP)

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 51 / 407

Multiprocessor Systems

The definition gets more complicated today: multicore systems.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 52 / 407

Multiprocessor Systems: Main Terms

CPU — The hardware that executes instructions.

Processor—A physical chip that contains one or more CPUs.

Core — The basic computation unit of the CPU.

Multicore — Including multiple computing cores on the same CPU.

Multiprocessor — Including multiple processors.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 53 / 407

Single/multiprocessing: Discussion with peers (5 minutes)

Find out how many processors and CPUs there are in your chosen personal device (laptop,
mobile phone).

Discuss with your peers and compare.

At the end volunteers welcome to tell us the details about their CPU.

Does anyone in the room have a device with one CPU or even one core?

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 54 / 407

Part VI: Key Concepts for Operating Systems

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 55 / 407

Operating-System Operations

As noted earlier, bootstrap program is a key component that starts a computer:

Stored in nonvolatile memory.

Initializes CPU registers, device controllers, memory contents.

Loads and starts executing the OS: locate the kernel and load into the main memory.

Once the kernel is loaded, it can start providing services to the system and its users.

System daemons also run “always”, alongside the kernel, and provide various system services.

Once the kernel and daemons are running, the OS is waiting for I/O device requests and other
tasks to do. It can sit quietly if nothing is happening.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 56 / 407

Operating-System Operations

Back to interrupts:

Hardware interrupts: we looked at these. I/O interrupts and other devices.

Trap interrupts: software-generated interrupt: for example, division by zero or invalid
memory address being accessed.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 57 / 407

Multiprogramming

A single program cannot keep CPU or I/O devices busy at all times—the ability to run
multiple programs and change between them is multi programming.

It increases CPU utilization by swapping which program in execution (a process) gets the
CPU time.

When one process stops executing and starts waiting for I/O to finish, CPU is allocated to
another process that is ready to run.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 58 / 407

Multitasking

Similar to multiprogramming, but the switches between processes are very frequent to provide
users with a fast response time.

Processes

Having multiple running programs, processes, requires some form of memory management. We
also need a set of rules for deciding which process gets run (scheduling). Processes should
also not interfere with other processes. These issues will be addressed in later lectures.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 59 / 407

Multiprogramming: Memory Layout

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 60 / 407

User and Kernel Modes of Operation

Main idea

Incorrect or malicious program should not be able to break the OS, execute code that belongs
to OS services, or take over the hardware resources.

To avoid these problems, OS can execute code in user mode and in kernel mode (also
known as system/supervisor/privileged mode).

OS services and the kernel are executed in the system mode, while user programs are in user
mode. Once program requests some important resources, it can go into the kernel mode for
some specific tasks, system calls.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 61 / 407

User and Kernel Modes of Operation

At system boot time, the hardware starts in kernel mode.

Also, on interrupts, the hardware switches to kernel mode.

In general, whenever OS gains control, we are in kernel mode.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 62 / 407

Timer: Periodic Interrupts from OS

For the OS to maintain control over the CPU we need protection against user program getting
stuck in infinite loop or similar.

Timer is set to interrupt the computer after a specified period.

Period can be fixed or variable.

OS sets up the timer before transferring control to user programs. When the timer interrupt
occurs OS gets control and can decide whether to abort the program or let it run longer.

Instructions that set up the timer are privileged instructions—hardware operations that can
only be executed in kernel mode.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 63 / 407

Process Management

What is a process

A program is compiled and stored in the main memory, as a set of instructions. When the
CPU is going through those instructions and executing them one by one, the program takes a
form of a running process. Concept of processes is fundamental to OS resource management.

Example of processes: a compiler that is compiling some code; a word processor that has a
document open; a social media app open on a smartphone.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 64 / 407

Process Management

Processes need resources: CPU, memory, I/O, files, initialization data.

A program is not a process—it’s a passive entity.

Processes instead are active entities.

A single-threaded process has one program counter specifying the next instruction to
execute.

Sequential execution: CPU executes instructions one at a time, until the process
terminates.

Two processes can be associated to the same program, but are considered separate
entities, separate execution sequences.

Multithreaded processes have multiple program counters—we will address threads
later in the module.

Typically many processes exist, some belong to OS executing in kernel mode, some to
user, executing in user mode: OS multiplexes between these processes on single or
multicore CPUs.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 65 / 407

Process Management

OS undertakes following activities in relation to processes:

Creating and deleting processes.

Scheduling processes and threads on the CPUs.

Suspending or resuming processes.

Provide process synchronization—we address this later in the module.

Provide ways for process communication—also later in the module.

We will get back to processes in Week 3.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 66 / 407

Memory Management

Main memory is central to the operation of a modern computer system.

Main memory can be very large, holding thousands to billions of bytes, each addressed
separately.

CPU and I/O devices can target those bytes (read/write).

Apart from registers and caches, main memory is the only other memory directly
accessible by the CPU.

For CPU to access other data, such as in various disks, it has to be transferred to the
RAM first.

Data and instructions therefore first travel to the RAM.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 67 / 407

Memory Management: Program Execution

1 Load a program into the main memory and let CPU know the start address.

2 As program executes, instructions and data are accessed by addressing the main memory.

3 When a program terminates, space is freed and a new program may take its place in the
main memory.

4 Several programs are usually in memory, which creates a need for memory management.

OS memory management

Keep track of used memory blocks and which process is using them. Allocate/deallocate
memory space. Decide which processes to move in and out of memory. We will get back to
this in Week 9.

You can notice the complexity of work of OS is growing.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 68 / 407

Cache Management

Caching

Caching is a technique used to speed-up access to commonly read/written information—the
core idea is to copy blocks of information from slower to faster memory and then access it
from that faster memory. This state is temporary and caching is happening very frequently at
all levels: hardware, OS, software.

When we need a particular piece of data, we first check the cache. If found, we don’t go to
slower memory. Otherwise we copy the data from the RAM to the cache—assume it will be
needed again soon.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 69 / 407

Cache Management

Cache is smaller than main memory. Cache replacement policy is an important
consideration in OS and can increase performance significantly: what should we keep in cache
and what should we move to memory?

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 70 / 407

Cache Coherence

Cache coherence

In multiprocessor environment, each processor may have a separate cache. If both contain the
same memory copied from the RAM, and one of them updates it, what happens to the other?
Cache coherency is needed to make sure the data is not outdated in one of the copies. In
distributed systems problem severe: same data in different computers.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 71 / 407

Security and Protection

OS protects hardware and memory resources from what can be considered unauthorized
access by processes and users.

Protection: mechanism for controlling access to certain resources defined by the
computer system.

Security: defense of the system against internal and external attacks: denial-of-service,
worms, viruses, identity theft, theft of service, ...

Operating System Security Measures

Keep track of user IDs; each user IDs has associated resources that they can access; group ID
allow set of users to be assigned permissions.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 72 / 407

Virtualization

Run another OS within the main OS, run applications on that guest OS.

Emulation: guest OS compiled for a different hardware which has to be emulated to run on
the hardware we have on our desk.

Virtualization: guest OS compiled for our hardware, and run natively, using that CPUs
instruction set. This is faster than emulation, but limited.

XV6

In the labs we are emulating RISC-V architecture and running xv6 by translating RISC-V
instructions that xv6 uses to Intel/AMD instructions which the lab computers understand.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 73 / 407

Virtualization

(a)

processes

hardware

kernel

(b)

programming
interface

processes

processes

processes

kernelkernel kernel

VM2VM1 VM3

manager
hardware

virtual machine

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 74 / 407

Kernel Data Structures

We finish this week with a look (a reminder?) of the various data structures that are used in
the kernel to store and manage data.

Singly linked list:

data data data null

• ••

Doubly linked list:

data null nulldata data data

• ••

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 75 / 407

Kernel Data Structures

Circularly linked list:

data data data data

• ••

Lists of size n require at most n checks to find an item.

A stack is a common data structure in OS: last-in first-out (LIFO) structure which pushes
things at the top and pops them from the top of the list. Interrupt routines push registers and
pop them back to restore the previous state of the CPU.

Queue similarly uses first-in first-out idea (FIFO).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 76 / 407

Kernel Data Structures

Trees introduce hierarchy: parent-child structure between data points.

17

35

146 14 40326

12

Tree search complexity

Unbalanced tree of n nodes can require up to n comparisons to find the data. Balanced tree
can improve this by requiring log(n) (height of left and right subtrees differ by at most 1).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 77 / 407

Kernel Data Structures

Hash maps can allow a search cost of at most 1.

0 1 . . n

value

hash map

hash_function(key)

Ideally, each unique key is mapped to unique value, which can be used as an index to a table
containing data we want.

Hash collisions can occur: different keys map to the same value.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 78 / 407

COMP2211: Progress

Week Topic

1 Introduction to OS
2 OS services
3 Processes
4 Xv6: Live coding and Q&A from the xv6 book
5 Reading week. No scheduled labs or lectures
6 Threads and concurrency. Assignment due this week.
7 Scheduling
8 Process synchronisation
9 Memory management
10 Catch up
11 Module review

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 79 / 407

Progress

Week Topic

1 Introduction to OS
2 (current) OS services

3 Processes
4 Xv6: Live coding and Q&A from the xv6 book
5 Reading week. No scheduled labs or lectures
6 Threads and concurrency. Assignment due this week.
7 Scheduling
8 Process synchronisation
9 Memory management
10 Catch up
11 Module review

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 80 / 407

Structure of COMP2211: Reading List

We will be mainly using the Operating System Concepts (OSC) 10th ed., 2018, and the 3rd
edition of the xv6 book (XV6), 2022. These slides are based on OSC (see the reference list).

Week Reading materials

1 Chapter 1 OSC. Chapter 1 XV6.
2 (current) Chapter 2 OSC. Chapter 2 XV6.

3 Chapter 3 OSC.
4 Reread Chapters 1–2 XV6.
5 Reread Chapters 1–3 OSC.
6 Chapter 4 OSC.
7 Chapter 5 OSC.
8 Chapter 6 OSC.
9 Chapters 9–10 OSC. Chapter 3 XV6.
10 Reread Chapters 4–6 OSC.
11 Reread Chapters 9–10 OSC.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 81 / 407

Objectives

Identify services that OS provides.

Discuss system calls.

Compare monolithic, layered, microkernel, modular and hybrid approach to OS design.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 82 / 407

Part I: Description of the Problem

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 83 / 407

Operating-System Services

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 84 / 407

Operating-System Services

Set of features helpful most directly to the user:

User interface (UI): graphical, touch-screen, command-line interface, ...

Program execution: load programs from memory and run them; end execution.

I/O operations: access data from files or I/O devices. For efficiency and protection,
users cannot do so directly: OS services do that for us.

File-system manipulation: read, write, create, delete, search files. Access permission
control.

Communications: Communicate between processes. Shared memory or message
passing communication.

Error detection: Errors occur in CPU, memory, I/O devices, user programs: OS has to
detect, correct, report errors. Sometimes may decide to halt the system.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 85 / 407

Operating-System Services

Other features are mainly for the operation of the system:

Resource allocation: Multiple processes are running on the system and they should be
allocated resources: CPU cycles, main memory, file storage, I/O device access.

Logging: Keep track of which programs what resources.

Protection and security: Protect information between different users on the system.
Make sure processes do not interfere. Control resource access. Security from outside:
control access to the system.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 86 / 407

User and OS Interface: Command Interpreters

Command Interpreters

On UNIX and Linux systems multiple options: C shell, Bourne-Again shell, Korn shell. The
main function is to execute user supplied commands, which usually modify files on the system.

The commands can be built into the shell or they can be a separately stored executable which
the shell can invoke. The latter requires no modification to the shell when adding new
commands.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 87 / 407

User and OS Interface: Command Interpreters

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 88 / 407

User and OS Interface: Graphical User Interface

Instead of entering commands directly, we could use a Graphical User Interface—a
mouse-based window-and-menu interface.

Users move mouse and click on images that represent files, executables, directories, to interact
with them.

First GUI appeared in 1973.

Apple made GUI (desktop) widespread in the 1980s.

On UNIX systems traditionally command line dominated, but open-source GUIs exist: KDE,
GNOME, ...

Touchscreen is a form of GUI common on mobile devices.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 89 / 407

User and OS Interface: When is Command Line Interface better?

Command-line is usually faster, but requires specialized knowledge.

System administrators for example would choose command line over a GUI for most
tasks.

Not everything is available in GUI—specialized commands only accessed through CLI.

Easier to do repetitive tasks—commands can be recorded in a file and easily rerun (shell
scripts).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 90 / 407

Vevox quiz

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 91 / 407

Part II: System Calls

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 92 / 407

System Calls

System calls: a well-defined interface to the services of an operating system, used by
programmers and users.

Usually written in C or C++, but assembly also used.

Consider an example task of reading a file and writing its contents to another file. As a UNIX
command it may look like this:

cp in.txt out.txt

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 93 / 407

System Calls: an Example

cp in.txt out.txt

In this simple task, many OS services are employed:

Entering the command, or moving a mouse to select files, causes sequence of I/O system
calls.

Then, files need to be opened: another set of system calls.

Errors need to be detected: input file not existent, output file already exists with the
same name.

Can ask user if they want to replace the output file—requires set of system calls.

When both files are open, we loop by reading bytes from one to another (system calls).

Each read must return possible error conditions: end-of-file, hardware failure to read, ...

Once done, files should be closed (system calls).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 94 / 407

System Calls: an Example

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 95 / 407

Application Programming Interface (API)

Most programmers will not see this level of complexity of numerous OS services being in use.

APIs hide this away behind a set of standard functions which are made available to
programmers, for performing common tasks when developing applications.

Input and output parameters are specified for each API function.

Common APIs:

Windows API.

POSIX API (UNIX, Linux, macOS).

Java API (Applications based on the Java Virtual Machine).

APIs provide code portability and eases the task of using OS services.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 96 / 407

Application Programming Interface (API)

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 97 / 407

Application Programming Interface (API)

System call interface

This is an abstraction that allows programmer not to think about the details of system calls
being used in API functions. Only need to obey the API and understand the effects of calling
it.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 98 / 407

System Calls: Parameter Passing

System calls require various information, for example, files, devices, addresses in memory,
lengths of byte streams, ...

Three methods to pass parameters to OS:

Through registers.

Store in a table and the address to it is passed through a register.

Pushed to a stack by a program and popped off the stack by OS.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 99 / 407

System Calls: Parameter Passing

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 100 / 407

System Calls: Types

We can roughly group system calls into six categories:

1 Process control

2 File management

3 Device management

4 Information maintenance

5 Communications

6 Protection

Next we discuss each of these categories.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 101 / 407

System Calls: Process Control

Running program needs to halt execution.

If the termination is abnormal, some log files are usually generated.

Debugger may use those logs to aid programmer in fixing problems.

Bugs are usually discovered this way in the code.

When a process is running, it may want to load and execute other programs.

Create, terminate, duplicate, wait for processes.

Get information about a process.

Where data is shared among processes, locking is provided to assure no clashes.

We will go into detail in later weeks.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 102 / 407

System Calls: File Management

Common system calls that deal with files:

Create and delete files.

Open files for reading and writing.

Similar operations are required for directories.

Determine and set attributes: file name, type, protection codes, ...

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 103 / 407

System Calls: Device Management

Processes may need resources to execute: main memory (RAM), disk drives, access to files, ...

Resources available can be granted, but usually processes will have to wait for them.

We can think of resources as devices: physical or virtual.

OS provides systems calls for interacting with these:

Request and release a device.

Similar to open and close system calls for files.

Once we have the device allocated to us, we can read and write.

File handling and general device handling is so similar that UNIX merge the two.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 104 / 407

System Calls: Information Maintenance

There are system calls for transferring information between OS and user programs:

Time and date calls.

Version of OS.

Amount of free memory or disk space.

Memory dump also goes into this category.

Other debugging info usually provided: single step, runtime profiling, program counter
recording, various information about processes.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 105 / 407

System Calls: Communication

Processes need to communicate, and there are two main methods: message-passing model
and shared-memory model.

Message-Passing Process Communication Model

Processes exchange messages with one another to transfer information. Before communication
takes places, connection must be opened. Computer host name and process name are used
to identify the possibly remote parties for communication. System calls to establish or abort
communication are available. Other system calls to receive and send messages are also
available.

Shared-memory Model

Processes use system calls to create and gain access to regions of memory owned by other
processes. Normally, OS prevents process from accessing memory allocated to other processes.
In shared-memory model processes have to agree to remove this obstruction.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 106 / 407

System Calls: Protection

OS should provide services for protecting computer system resources.

Traditionally this was to protect one user from another on an instance of some OS.

With Internet all systems started to get concerned about protection.

System calls include setting permission on files and disks.

Allow/deny access (for particular users).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 107 / 407

System Calls: Example System Calls on Windows and UNIX

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 108 / 407

System Calls: Example System Calls on Windows and UNIX

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 109 / 407

System Services

OS System Services

This is separate from system calls within the OS. System services are sitting between the
OS and the Application Programs. Also called system utilities.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 110 / 407

System Services

Some system services are interfaces to system calls, but some are more complex.

Examples:

File management: create, delete, copy, rename, print, list files/directories.

Status information. Can be simple: time, date, memory space, users. Could be more
complex things about performance or debugging.

File modification: text editors, text searching utilities, text transformation.

Programming language support: compilers, assemblers, debuggers. interpreters.

Program loading and execution.

Application programs supplied with OS are usually higher level tools that utilize many
system services: browsers, word processors and text formatters, spreadsheets.

Most users view OS through application programs and system services, not system calls.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 111 / 407

Vevox quiz

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 112 / 407

Part III: Code Compilation and Loading

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 113 / 407

Linkers and Loaders

Usually a program resides on a disk as a binary executable file. To run it, the executable has
to be copied to memory and placed in the context of some process.

Relocatable object file: source code compiled into object files suitable to be moved into
a particular memory location.

The linker combines these objects into a binary executable.

Linker may include standard libraries, such as math.h in C.

A loader loads the executable into memory to be run on CPU.

Relocation assigns final addresses to various parts of the executable after it is placed in
memory.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 114 / 407

Linkers and Loaders

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 115 / 407

Linkers and Loaders

Consider running ./main on command line.

The shell first creates a new process using the fork() system call.

The shell then invokes the loader with exec() passing it the name of the executable:
main.

The loader loads the program into main memory using the address space of the new
process.

Similar process occurs in GUI by double clicking the executable with the mouse.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 116 / 407

Linkers and Loaders: Dynamic Linking

In the above we assume that libraries are linked into the executable and then loaded into
memory together with the rest of the program code—even if the code will end up not calling
those libraries.

Dynamic Linking

Link libraries dynamically when the program is being loaded into memory. Avoid linking and
loading libraries that will end up not being used in the program. Instead the library is loaded
when, and if, it is required during run time. Possible memory space improvements.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 117 / 407

Linkers and Loaders: ELF format

Object files and executables typically have a standard format. It holds machine code and
various metadata about functions and variables in the program. Unix and Linux use the ELF
format.

One data point of interest is an entry point—address of the instruction to execute upon the
start of the program.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 118 / 407

Why Applications are OS Specific

Applications compiled for one system (OS-hardware combination) usually will not work on
a different system.

Each OS has unique system calls.

Possible solutions:
1 Use interpreted languages like Python, Ruby: interpreter on each system goes through the

source code and executes correct instructions and system calls. Interpreter can be limited.
2 Use language like Java that runs on Java Virtual Machine (JVM): virtual machine is ported

to different systems and programmers use the universal interface of the JVM rather than the
specific OS.

3 Compile code (such as C) for every different configuration.

In general this is still a difficult problem and there is no ultimate solution. Porting is required.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 119 / 407

Part IV: Design and Structure of Operating Systems

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 120 / 407

OS Design and Implementation

Design of an operating system is a major undertaking and there is no complete solution that
could generate an OS automatically given requirements.

Internal structure can vary widely, based on the purpose of OS.

User goals and system goals first are outlined.

User: OS easy to learn and use, reliable, fast, safe.

System: easy to design, implement, maintain; efficient, reliable, error free.

There can be many interpretations of these vague requirements

General principles are known (we are learning them in this module), but designing one is a
creative task that relies on many human decisions and software engineering.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 121 / 407

OS Design and Implementation: Policy and Mechanism

Separation of policies (what) and mechanisms (how) is an important concept.

Example policy: interrupt OS regularly; Mechanism: timer interrupts.

Good approach as we can change policies later and mechanisms are in place: for example,
change the timer interrupt frequency.

Linux example

The standard Linux kernel has a specific CPU scheduler—but we can change it to support a
different policy in how we schedule different jobs on the system.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 122 / 407

OS Design and Implementation: Languages

OS is a collection of many programs, implemented by many people over years—general
statements hard to make but there are some common points.

Kernel: assembly, C.

Higher level routines: C, C++, other.

For example, Android is mostly C and some assembly.

Android system libraries C or C++.

Android APIs: Java.

Advantages of High Level Languages

Code written faster, more compact, easier to understand and maintain. Compiler
improvements easy to integrate by recompiling the OS. Easier to port the whole OS to new
architectures.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 123 / 407

Vevox quiz

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 124 / 407

OS Structure

Monolithic kernel: Place all the functions of the kernel into a single, static binary file that
runs a single address space. Not much structure or no structure at all.

Original UNIX system used this approach: it had a kernel and the system programs. It has
evolved over the years with some structure.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 125 / 407

OS Structure: Traditional UNIX system

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 126 / 407

OS Structure

Monolithic kernels are simple in concept, but are difficult to implement and extend as
everything is in one big kernel rather than structured.

They have performance advantage, which explain why they are still relevant.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 127 / 407

OS Structure: Linux system

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 128 / 407

OS Structure

Monolithic kernels are said to be tightly coupled because changes in the system can affect all
other parts.

We can instead take a loosely coupled approach where the kernel is structured into parts
doing specific and limited functions.

Layered system: highest layer is user interface, while lowest layer is hardware. Layers can
only call functions from the layer below.

Debugging is easier in this—debug first layer without affecting the rest of the system, once
done, move up the layer.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 129 / 407

OS Structure: Layered approach

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 130 / 407

OS Structure

Kernels can be modularized using the microkernel approach.

Remove all nonessential components from the kernel and implement them as user level
programs—this results in a small kernel.

When the operating system needs to be extended, new services are added in user space rather
than modifying the kernel. Kernel modifications require fewer changes since it is small.

It is also easier to port to another OS and provides more security since most services run in
user mode.

Performance suffers compared to one big kernel—different parts have to communicate.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 131 / 407

OS Structure: Microkernel

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 132 / 407

Vevox Quiz

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 133 / 407

COMP2211: Progress

Week Topic

1 Introduction to OS
2 OS services
3 Processes
4 Xv6: Live coding and Q&A from the xv6 book
5 Reading week. No scheduled labs or lectures
6 Threads and concurrency. Assignment due this week.
7 Scheduling
8 Process synchronisation
9 Memory management
10 Catch up
11 Module review

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 134 / 407

Progress

Week Topic

1 Introduction to OS
2 OS services
3 current Processes
4 Xv6: Live coding and Q&A from the xv6 book
5 Reading week. No scheduled labs or lectures
6 Threads and concurrency. Assignment due this week.
7 Scheduling
8 Process synchronisation
9 Memory management
10 Catch up
11 Module review

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 135 / 407

Reading List

We will be mainly using the Operating System Concepts (OSC) 10th ed., 2018, and the 4th
edition of the xv6 book (XV6), 2024. These slides are based on OSC (see the reference list).

Week Reading materials

1 Chapter 1 OSC. Chapter 1 XV6.
2 Chapter 2 OSC. Chapter 2 XV6.
3 (current) Chapter 3 OSC.

4 Reread Chapters 1–2 XV6.
5 Reread Chapters 1–3 OSC.
6 Chapter 4 OSC. CW deadline
7 Chapter 5 OSC.
8 Chapters 6–8 OSC.
9 Chapters 9–10 OSC. Chapter 3 XV6.
10 Reread Chapters 4–6 OSC.
11 Reread Chapters 9–10 OSC.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 136 / 407

Objectives

Study the concept of processes.

OS representation and scheduling of processes.

Creation and termination of processes.

Study the methods for interprocess communication.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 137 / 407

Part I: Introduction to Processes

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 138 / 407

What is a Process?

Early computers: only one program executed at a time.

One program had complete control over resources.

Today: multiple programs in memory, all executed through multitasking.

This evolution required compartmentalization of various programs.

Process

Process is a program in execution. One program invoked multiple times results in multiple
processes.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 139 / 407

A Concept of Processes

Early computers were batch systems: execute jobs submitted by users. Minimum
interaction.

This was followed by time-shared systems: user programs or tasks. Potentially
interacting.

Even one user can run several tasks: browser, email, editor.

Jobs

Calling running programs jobs has historical significance, as most of the OS concepts were
developed around job processing. You may see the term used to this day, but process is a
modern replacement

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 140 / 407

A Concept of Processes

The status of the current activity of some process is represented by

Current value of the program counter: where are we in the execution of the binary?

Contents of the CPU registers: what data are we working on?

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 141 / 407

A Concept of Processes: Memory Layout

Each process has its own memory layout:

Text section: executable code.

Data: global variables.

Heap section: Memory that grows
and shrinks dynamically during
execution.

Stack: Structure for temporary
values (function parameters, return
addresses, and local variables).

Text and data sections are fixed size.
Heap and stack change size.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 142 / 407

A Concept of Processes: Stack

Stack contains potentially a small amount of data which is pushed and popped using specific
CPU instructions.

For example, when a function is called, input arguments, local variables, and the return
address are pushed onto the stack.

Upon completing the function, data is popped from the stack: the last one is usually the
return address to get back to caller.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 143 / 407

A Concept of Processes: xv6 stack

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 144 / 407

A Concept of Processes: Heap

The heap can be grown dynamically.

In C malloc and free do that for us.

Usually heap and stack grow toward
each other—overlap watched by OS.

On the right is the xv6 process
memory, which is slightly different.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 145 / 407

A Concept of Processes: Memory Layout Example

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 146 / 407

Vevox Quiz

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 147 / 407

Part II: Scheduling of Processes

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 148 / 407

Process State Transitions

Processes change states during execution.

New: Process has been created.

Running: CPU is reading process’
instructions.

Waiting: Waiting for an event (for
example, I/O completion).

Ready

Terminated

Note that only one process can be running on a core. Others may be ready or waiting.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 149 / 407

Process Control Block (PCB)

OS keeps track of processes using a process control block (PCB).

Process state

Program counter (PC)

CPU registers: along with the PC, these have to be saved when
process is interrupted.

CPU-scheduling information: priority and other scheduling
parameters.

Memory-management information: location of various
memories assigned to the process (Week 9).

Accounting information: resource utilization statistics.

I/O status information: I/O devices allocated to the process,
open files, ...

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 150 / 407

Process Control Block (PCB): Linux Example

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 151 / 407

Processes or Threads?

You may have heard of threads more rather than processes.

Common term in parallel programming frameworks, such as GPU programming.

Here we implied that a process performs a single thread of execution.

A single thread of instructions being read in sequence by CPU.

Multi-threading

Nowadays Operating Systems extend processes to be able to perform multiple tasks at
once—for example, two cores executing at different locations in the binary of a process. PCB
and other parts of OS have to be expanded. See Week 6 for detail.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 152 / 407

Process Scheduling

The objective of multi-programming is to maximize CPU utilization.

Time-sharing (or multitasking) adds another requirement—the switching between processes
should be frequent enough for users to interact with the running programs.

Process Scheduler

Integral part of operating systems which meets the constraints posed by time-sharing and
multi-tasking by selecting a process to run from a set of available processes.

Multiprocessing

Each CPU core can run one process at a time; N CPUs can run N processes. If more processes
than cores are created, some will have to wait. Degree of multiprogramming defines the
number of processes currently in memory.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 153 / 407

Process Scheduling

Two types of processes:

I/O bound: most time spent waiting for memory.

CPU bound: most time spent in execution.

The types of processes going through the system will affect the objectives of
multiprogramming and time-sharing.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 154 / 407

Process Scheduling: Queues

Processes enter the system and are put into a ready queue.

Queue is usually a linked list, where each PCB links to the next.

There may be other queues, for example wait queue for processes waiting I/O.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 155 / 407

Process Scheduling: Queues

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 156 / 407

Process Scheduling: Queuing Diagram

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 157 / 407

Process Scheduling: CPU Scheduler

Role of a scheduler: from a set of ready select one and run on CPU.

Scheduler is working frequently;

I/O bounds processes may execute for a few milliseconds before waiting for I/O.

CPU-bound processes may require CPU for extended durations, but scheduler unlikely to
grant it.

Typically designed to switch processes very frequently (less than every 100 milliseconds).

Memory Swapping

This technique may decide to move a process from memory to disk, reduce the degree of
multiprogramming and thus reduce the active contention for the CPU. Later the process can
be returned to memory and continued where it left off (state save/restore required).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 158 / 407

Process Scheduling: Context Switching

Remember interrupts cause CPU to pause current task and do some kernel routine.

CPU needs to save the current context of a process and later restore it for continuing
running it.

Context is represented in the PCB of a process.

Register contents, state of the process, memory management information.

Context Switch

Perform a state save of the current process and a state restore of a different process.

Context switch is pure overhead as CPU is not executing any process instructions.

Typical speed: several microseconds. Depends on size of state needed to save/restore.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 159 / 407

Process Scheduling: Context Switching

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 160 / 407

Vevox Quiz

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 161 / 407

Part III: Process Manipulation

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 162 / 407

Operations on Processes: Creation

Processes may create several new processes during execution.

Creating process is called a parent process and the new processes are called children
processes.

New processes can in turn create more—this forms a tree of processes.

Process identifier (pid) is usually used to identify each process.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 163 / 407

Operations on Processes: Creation

Linux example

systemd created on boot; it starts the processes for various services.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 164 / 407

Operations on Processes: Creation

Options for resources for the child processes:

Obtain directly from OS.

Share a subset of resources from a parent.

Restricting child process to a subset of the parent’s resources avoids overloading the system
through creation of many child processes.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 165 / 407

Operations on Processes: Creation

When a process creates another process, two possibilities:

Parent and child execute concurrently (not necessarily in parallel).

Parent waits until some or all of its children terminate.

Address space also has two possibilities:

Parent and child have the same program and data (xv6 fork).

The child has a new program loaded into it (xv6 fork and then exec).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 166 / 407

Operations on Processes: Creation

In UNIX, a new process is created by fork():

New process has a copy of address space of the original process.

Both processes continue execution at the instruction after the fork.

fork() returns zero in the child and PID of the child in the parent.

After the fork() usually exec() is called:

Process’ memory space is replaced by a new program.

Load a binary file into memory.

Destroy the memory image of the program containing exec system call.

Parent can then create more children, or wait until termination of current ones.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 167 / 407

Operations on Processes: Creation

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 168 / 407

Operations on Processes: Creation in UNIX with C

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 169 / 407

Operations on Processes: Termination

Process terminates when it asks OS to delete it using exit() system call.

All the resources: physical and virtual memory, open files, I/O buffers are reclaimed by the OS.

A parent may forcibly terminate its created processes:

If the child process has exceeded its usage of some allocated resources.

The job that the child is doing is no longer required.

The parent is exiting and it is required to terminate the sub-tree of processes before
exiting (cascading termination).

Zombie processes

Parents may call wait() to wait for their children to terminate. The processes that have
terminated but whose parents have not yet called wait() are called zombie processes—we
have to keep them in the system to return the status to the parent eventually.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 170 / 407

Part IV: Communicating Processes

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 171 / 407

Interprocess Communication

Active processes on the system can either be Independent or cooperating.

A process is independent if it does not share any data while executing.

A process is cooperating if it can affect or be affected by other processes.

Process cooperation useful in a few scenarios:

Information sharing: for example, copy-paste between programs.

Computation speedup: split big tasks into multiple subtasks.

Modularity: The system may be designed to have separate processes or threads working
cooperatively to achieve some function.

When processes cooperate, they require interprocess communication (IPC).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 172 / 407

Interprocess Communication

Two fundamental concepts:

Shared-memory model: agree a region of memory to share among cooperating
processes. Read and write there to exchange info.

Message-passing model: use a message-passing protocol to send and receive
information.

Both are implemented in operating systems.

Message-passing model is useful when no conflict resolution is desired. However, it is slower,
since each read/write requires kernel ops.

With share-memory model, conflicts and race conditions may appear (two processes write).

Message-passing is required to communicate between different systems that do not share
memory.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 173 / 407

Interprocess Communication

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 174 / 407

Interprocess Communication: Pipes

Pipes were one of the earliest UNIX mechanisms for interprocess communication.

An example of shared-memory model of communication.

Four key design considerations:

Bidirectional or unidirectional communication?

If bidirectional, can data travel both directions at once?

Do we need a relationship (parent-child) between communicating processes?

Can we use pipes over network or locally only?

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 175 / 407

Interprocess Communication: Ordinary Pipes

Produced-consumer model: producer writes to the write end of the pipe while the
consumer reads from the read end.

Unidirectional: we need two pipes for communicating back to the producer.

In UNIX this is constructed using pipe(int p[]) where p[0] is the read end of the pipe
and p[1] is the write end.

p[0] and p[1] are special types of files in UNIX, thefore fork() in the parent will make
the child inherit these.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 176 / 407

Interprocess Communication: Named Pipes

Ordinary pipes provide a simple mechanism for processes to communicate, but they only exist
until processes exist and communicate. When they terminate, the pipe disappears.

Named pipes (FIFOs) in UNIX provide extra functionality:

Bidirectional communication.

No parent-child relationship needed.

Several processes can use the pipe for communication.

Pipe remains active after communicating processes terminate.

Named pipes are bidirectional, but provide only half-duplex transmission (only one direction at
a time).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 177 / 407

COMP2211: Progress

Week Topic

1 Introduction to OS
2 OS services
3 Processes
4 Xv6: Live coding and Q&A from the xv6 book
5 Reading week. No scheduled labs or lectures
6 Threads and concurrency. Assignment due this week.
7 Scheduling
8 Process synchronisation
9 Memory management
10 Catch up
11 Module review

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 178 / 407

Progress

Week Topic

1 Introduction to OS
2 OS services
3 Processes
4 Xv6: Live coding and Q&A from the xv6 book
5 Reading week.
6 (current) Threads and concurrency. Assignment due this week.

7 Scheduling
8 Process synchronisation
9 Memory management
10 Catch up
11 Module review

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 179 / 407

Reading List

We will be mainly using the Operating System Concepts (OSC) 10th ed., 2018, and the 4th
edition of the xv6 book (XV6), 2024. These slides are based on OSC (see the reference list).

Week Reading materials

1 Chapter 1 OSC. Chapter 1 XV6.
2 Chapter 2 OSC. Chapter 2 XV6.
3 Chapter 3 OSC.
4 Reread Chapters 1–2 XV6.
5 Reread Chapters 1–3 OSC.
6 (current) Chapter 4 OSC.

7 Chapter 5 OSC.
8 Chapters 6–8 OSC.
9 Chapters 9–10 OSC. Chapter 3 XV6.
10 Reread Chapters 4–6 OSC.
11 Reread Chapters 9–10 OSC.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 180 / 407

Objectives

Discuss the motivation, benefits, and challenges in designing multithreaded processes.

Talk about the basic components of a thread.

Describe mechanisms for threading.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 181 / 407

Vevox big quiz (15–20 minutes)

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 182 / 407

Part I: The Concept of Threads

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 183 / 407

Threads: Introduction

In week 3 we have explored the concept of processes, which assumes that it is a running
program that has a single thread of control.

For interest, xv6 supports only single-threaded processes. See p. 29 of the xv6 book.

In modern computing most operating systems provide capabilities for processes to have
multiple threads of control.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 184 / 407

Threads: Introduction

What is a Thread?

A basic unit of CPU utilization; it comprises a thread ID, a program counter (PC), a
register set, and a stack.

Same threads within a process share: code section, data section, and other resources (for
example open files).

A traditional process has a single thread of control.

Processes with multiple threads can perform more than one task at a time.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 185 / 407

Single and Multithreaded Processes

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 186 / 407

Multithreading

Examples:

Application creating photo thumbnails from a collection of images uses a different thread
for each image.

A web browser displays images or text in one thread and retrieves network data in another.

Word processor has a thread to display UI, a thread to respond to keystrokes, and a
thread for spellchecking.

Multicore Systems and Threads

Applications can be designed for threads to run in parallel on multicore systems.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 187 / 407

Example: Multithreading in a Web Server

In some situations, applications may be required to perform several similar tasks.

For example, a web server accepts client requests for web pages, images, sound.

Several users may request access at the same time.

Running a single thread, the web server would hold other users, potentially for
prolonged periods.

One approach: tree of processes, with the root being the server and children being user
requests—time consuming process creation and resource use significant.

Since similar tasks are performed on requests, multithreading is a more efficient solution.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 188 / 407

Example: Multithreading in a Web Server

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 189 / 407

Multithreading

Other motivating aspects:

Most OS kernels are multithreaded; for example, during Linux boot time, threads are
created for managing devices, memory management, or interrupt handling.

Various applications that parallelize well can take advantage of multithreading: sorting,
tree algorithms, graph algorithms.

Data mining, graphics, artificial intelligence: people aim to design algorithms to exploit
multicore architectures.

Sometimes problems are embarrassingly parallel, without data dependencies, such as
adding two vectors together. These problems can be easily solved across many cores.

Sign up for COMP3221 next year to get into the details.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 190 / 407

Multithreading: Benefits

Four major categories:

1 Responsiveness: if one part of an application blocks, other threads can continue working.

2 Resource sharing: threads share memory resources of a process to which they belong.

3 Economy: allocating resources when creating processes is costly; context switch is also
costly. Threads are cheaper in both aspects.

4 Scalability: Multi-threaded processes can exploit multiple cores, whereas a
single-threaded ones can only run on one core.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 191 / 407

Part II: Introduction to Parallel Computation

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 192 / 407

Multicore Programming

Recall that a multicore environment is an environment in which single processing chip
contains multiple computing cores.

The communication within cores on the same chip is very fast.

Multithreaded programming provides a mechanism for an efficient use of multicores.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 193 / 407

Multicore Programming: Concurrency or Parallelism?

Concurrency (top) and parallelism (bottom) refer to different concepts.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 194 / 407

Multicore Programming: Concurrency or Parallelism?

On single core, concurrency means interleaving the execution of threads in time.

On a multicore system, concurrency means that some threads can execute simultaneously,
which means there is parallelism.

We can have concurrency without parallelism.

Historical perspective

Before multi-processor/core architectures became prevalent, most systems had a single
processor and operating systems were designed to provide illusion of parallelism by rapidly
switching processes.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 195 / 407

Multicore Programming: Key Challenges in Designing Programs

System designers and application programmers are pressured to make better use of multiple
cores—this is ongoing.

The systems are growing in size, both at large (warehouse computers) and small (laptops,
phones) scale.

Operating Systems have to accommodate multicore hardware.

Old single-threaded applications have to be ported.

New algorithms have to be developed from scratch (see the whole topic of parallel
algorithms).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 196 / 407

Multicore Programming: Key Challenges in Designing Programs

For example, see the TOP500 list: https://top500.org/lists/top500/list/2024/06/.

∼ 9 million cores. Photo source:
Wikipedia.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 197 / 407

https://top500.org/lists/top500/list/2024/06/

Multicore Programming: Key Challenges in Designing Programs

1 Identifying tasks: examine applications and find workloads that can be divided, ideally
into independent tasks.

2 Balance: make sure parallel tasks perform similar amounts of work.
3 Data splitting: The data accessed and manipulated by parallel tasks have to be divided.
4 Data dependency: Do tasks depend on output data from other tasks; synchronization

may be required.
5 Testing and debugging: Program running on N cores has many execution paths.

Debugging more difficult than in a single-threaded case.

Of interest

Many people believe that an entirely new software design approach will be needed in the
future. Computer Science educators often talk about teaching software development through
increased emphasis on parallel programming.

Question: how many of you have done some parallel code development/debugging/reading?

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 198 / 407

Multicore Programming: Types of Parallelism

Top: data parallelism; bottom: task parallelism.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 199 / 407

Multicore Programming: Types of Parallelism

Data parallelism: distribute data across N cores, each to receive a subset of the whole data.

Example: sum a vector of size K . Single-core would get elements from 0 to K − 1 and sum
them in series. On N = 2 core system, core 1 would get elements 0 to K/2− 1 and core 2
would get elements K/2 to K − 1.

Task parallelism: distribute different tasks (operations) across multiple cores. Each task may
require part or the whole of the input data.

In practice you may likely see a hybrid approach.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 200 / 407

Multicore Programming: Amdahl’s Law

What speedup can we expect when we add additional cores to an application that contain
both serial and parallel parts?

speedup ≤ 1

S + 1−S
N

where N is the number of cores, S is a portion of the application that must be performed
serially.

Example: S = 0.25 (25% of the application is serial and 75% is parallel). If N = 2 (2 cores),
the speedup is no greater than 1.6×.

If we now set N = 4 (4 cores), the upper bound on the speedup is 2.28× (not 4×!).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 201 / 407

Multicore Programming: Amdahl’s Law

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 202 / 407

Part III: Libraries for Multithreading

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 203 / 407

Multithreading Models

Support may be provided for threads at user level and kernel level: user threads and kernel
threads.

User threads work in user mode and kernel threads require direct OS support.

What is the relationship between user and kernel threads?

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 204 / 407

Multithreading Models: Many-to-One

Disadvantage: entire process blocks if one thread calls a blocking system call. Multiple threads
are unable to run in parallel → very few systems implement this.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 205 / 407

Multithreading Models: One-to-One

Advantages: another thread can run when one calls a blocking system call. Parallel processing
doable.

Disadvantage: Each user thread requires creating a kernel thread. Performance may suffer.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 206 / 407

Multithreading Models: Many-to-Many

Advantage: Number of kernel threads customizable according to an application or machine
requirements. Number limited; does not depend on how many user threads. Kernel can run
threads in parallel.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 207 / 407

Multithreading Models: two-level-threads

Combined approach which allows specific user threads to be assigned a kernel thread, but still
multiplex between other user and kernel threads.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 208 / 407

Thread Libraries

A thread library provides an API for managing threads.

Two approaches: entirely in user or in kernel modes.

Three main libraries: POSIX Pthreads, Windows thread library, and Java thread API.

For Pthreads and Windows data declared globally is shared among threads.

Synchronous and asynchronous threading

In the asynchronous threading parent continues working concurrently with any children
threads created. In the synchronous threading parent waits for children to complete: for
example, parent may combine the results from children.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 209 / 407

Thread Libraries: Pthreads

Pthreads is a standard API for thread
creation and synchronization.

Various IEEE standards address it.

It is a specification not an
implementation.

OS designers can implement the
specification their own way.

The C program on the right is a
standard way to use pthreads.

runner executes in a separate thread
from main.

sum is shared between both threads.

Look into Windows and Java threading.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 210 / 407

Implicit Threading

Designing parallel programs manually is potentially a cumbersome task.

To better support the design of concurrent and parallel applications is to automate the
identification and creation of threads.

Offload this work from developers to compilers: implicit threading.

Advantage of implicit threading

Developer identifies tasks that can run in parallel. The environment determines the low-level
details of thread creation and management.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 211 / 407

Implicit Threading: Thread Pools

Manual thread creation has two problems:

Thread creation may be costly; threads are discarded once finished.

Number of threads is unbounded: may exhaust system resources.

Thread pools

Create a number of threads at startup and make them available for doing work. The
application requests resources from the thread pool: if there is a thread available, it is
allocated; otherwise wait until a thread is placed back in the pool.

Several advantages of thread pools:

Servicing a request with existent thread may be faster than creating and deleting threads.

Thread pool limits the number of threads.

Thread pool can be configured based on available resources, or adjusted dynamically
based on what the applications are doing.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 212 / 407

Implicit Threading: Thread Pools

Fork-join model works for implicit threading as well:

A library manages threads and assignment of tasks to threads.

Threads are not created directly during fork. Parallel tasks are identified and designated
to threads.

Join mechanism provides the synchronicity.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 213 / 407

Implicit Threading: Example Libraries

Fork-join library available in the Java API.

OpenMP is a way to augment C, C++, Fortran programs to identify what can be
parallelized.

Grand Central Dispatch is Apple technology for implicit threading.

Intel Thread Building Blocks supports designing parallel C++ programs.

CUDA allows to program NVIDIA Graphic Cards to perform massively parallel
computations.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 214 / 407

Implicit Threading: OpenMP example in C

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 215 / 407

Implicit Threading: OpenMP example in C

Take two arrays a and b of size N. We want to add the array and produce a new array c.

This is an embarrassingly parallel problem.

OpenMP pragma will divide the work among the threads it creates.

Different parts of the vectors will be added in parallel.

Other OpenMP features

Developers can choose several levels of parallelism. For example, set the number of threads
manually. It also allows to say whether data is shared or private among threads.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 216 / 407

Activity: Discuss with Peers (5 minutes)

Assume that the number of available cores is 4.

Take the length of the array N = 40.

Questions:

1 What is the maximum number of for loop iterations that will be executed in parallel?

2 How many iterations will each core run, assuming each iteration runs in the same amount
of time and all cores start at the same time?

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 217 / 407

Part IV: Threading Issues

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 218 / 407

Threading Issues: fork and exec calls

We have seen fork() and exec() in a small UNIX system: create a child and load and
execute a binary.

This becomes difficult in a multithreaded environment: does fork duplicate the thread or the
whole set of threads within a process?

Different fork functions may be provided to achieve either.

The exec call typically works as usual: entire process is replaced by the specified program.

Which fork to use depends on the application.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 219 / 407

Threading Issues: Signal Handling

Signalling in UNIX is used to inform processes of events.

Occurrence of some event generates a signal.
The signal is delivered to a process.
Process handles the signal.

Example events: division by zero, illegal memory access, CTRL-C key combination.

Which thread should a signal be delivered to?

Various methods exist, for example: deliver to all threads; assign one thread to deal with
signals.

On UNIX:

kill(pid t pid, int signal)

Threads will either accept or block the signal. First thread to accept receives it.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 220 / 407

Threading Issues: Thread Cancellation

We may want to terminate threads before they complete, called target threads.

For example, threads looking through a database for something can stop when one finds the
item.

Problems can occur if the target thread is updating shared data while being cancelled.

pthreads for example allows threads to disable cancellation for some time.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 221 / 407

COMP2211: Progress

Week Topic

1 Introduction to OS
2 OS services
3 Processes
4 Xv6: Live coding and Q&A from the xv6 book
5 Reading week. No scheduled labs or lectures
6 Threads and concurrency.
7 Scheduling
8 Process synchronisation
9 Memory management
10 Catch up
11 Module review

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 222 / 407

Progress

Week Topic

1 Introduction to OS
2 OS services
3 Processes
4 Xv6: Live coding and Q&A from the xv6 book
5 Reading week.
6 Threads and concurrency.
7 (current) Scheduling

8 Process synchronisation
9 Memory management
10 Catch up
11 Module review

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 223 / 407

Reading List

We will be mainly using the Operating System Concepts (OSC) 10th ed., 2018, and the 4th
edition of the xv6 book (XV6), 2024. These slides are based on OSC (see the reference list).

Week Reading materials

1 Chapter 1 OSC. Chapter 1 XV6.
2 Chapter 2 OSC. Chapter 2 XV6.
3 Chapter 3 OSC.
4 Reread Chapters 1–2 XV6.
5 Reread Chapters 1–3 OSC.
6 Chapter 4 OSC.
7 (current) Chapter 5 OSC.

8 Chapters 6–8 OSC.
9 Chapters 9–10 OSC. Chapter 3 XV6.
10 Reread Chapters 4–6 OSC.
11 Reread Chapters 9–10 OSC.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 224 / 407

Objectives

To introduce CPU scheduling, which is the basis for multiprogrammed operating
systems.

To describe various CPU-scheduling algorithms and understand pros and cons of each.

To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular
system.

To understand challenges with scheduling in multiprocessor and real-time systems.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 225 / 407

Part I: Description of the Problem

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 226 / 407

A General Problem

We are going to look at scheduling in
operating systems, but it is a general
problem (think about where else you can
notice scheduling in everyday activities).

“So what to do, and when, and in what
order? Your life is waiting.”

From Algorithms to Live By, Chapter
5 on Scheduling.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 227 / 407

Why CPUs need scheduling?

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 228 / 407

Why CPUs need scheduling?

Processes go through multiple phases
of CPU-IO over their lifetime.

Maximum CPU utilization through
multiprogramming.

When processes wait for IO, CPU can
be used for something.

What to run next? There is a need
for scheduling.

CPU burst
load store
add store
read from file

store increment
index
write to file

load store
add store
read from file

wait for I/O

wait for I/O

wait for I/O

I/O burst

I/O burst

I/O burst

CPU burst

CPU burst

•
•
•

•
•
•

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 229 / 407

Typical CPU Burst Lengths

Usually many short and a few long CPU bursts.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 230 / 407

Part II: Introduction to Process Scheduling

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 231 / 407

CPU Scheduler

CPU utilization

When CPU becomes idle, OS finds work (ready process queue).

CPU scheduler selects a process from the ready queue and allocates CPU to it.

Queue may be ordered in various ways.

CPU scheduling decisions may take place when a process changes state:
1 running → waiting,
2 running → ready,
3 waiting → ready,
4 terminates.

For 1 and 4, scheduling is nonpreemptive (run as long as needed) while for 2 and 3
preemptive (may interrupt a running process).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 232 / 407

Challenges with Preemptive Scheduling

A few scenarios that cause problems:

1 Process 1 is writing data, is preempted by process 2 that reads the same data.

2 Process 1 asks kernel to do some important changes, process 2 interrupts while they are
being done.

Disabling interrupts

Irrespective of the challenges, most modern operating systems are fully preemptive when
running in kernel mode, but disable interrupts on certain small areas of code.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 233 / 407

Dispatcher

Dispatcher gives control of the CPU to the scheduled process.

Switching context.

Switching to user mode (kernel tasks in supervisor mode).

Jumping to the proper location in the previously interrupted user program (set the
Program Counter register).

Dispatch latency

Time it takes for the dispatcher to stop one process and start another running.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 234 / 407

Scheduling Criteria

CPU utilization—reduce amount of time CPU is idle.

Throughput—number of processes completed per time unit.

Turnaround time—amount of time to execute a particular process.

Waiting time—amount of time a process has been waiting in the ready queue.

Response time—amount of time it takes from when a request was submitted until the
first response is produced, not output (for time-sharing environment).

When designing a scheduler

It is desirable to maximize CPU utilization and throughput and to minimize turnaround time,
waiting time, and response time.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 235 / 407

Part III: Scheduling Algorithms

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 236 / 407

First-Come, First-Served (FCFS) Scheduling

Process Burst time

P1 24
P2 3
P3 3

If processes arrive in sequence we have the following schedule:

P P P1 2 3

0 24 3027

Waiting time for P1 = 0, P2 = 24, and P3 = 27.

Average waiting time: 0+24+27
3 = 17.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 237 / 407

First-Come, First-Served (FCFS) Scheduling

If processes arrive instead as P2, P3, P1:

P1
0 3 6 30

P2 P3

Waiting time for P1 = 6, P2 = 0, and P3 = 3.

Average waiting time: 6+0+3
3 = 3.

Substantial reduction from the previous case but in general not good.

Issue with FCFS

Convoy effect—short jobs can be held waiting by long jobs.

Note that FCFS is nonpreemptive.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 238 / 407

Questions?

“there’s nothing so fatiguing as the eternal
hanging of an uncompleted task,”

William James. From Algorithms to
Live By, Chapter 5 on Scheduling.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 239 / 407

Shortest-Job-First (SJF)

Append each process with the length of next CPU burst.
Schedule jobs with shortest time.
SJF is optimal, but difficult to know future CPU burst lengths.
Ties broken with FCFS scheduling.
Better name shortest-next-CPU-burst.

Process Next burst time

P1 6
P2 8
P3 7
P4 3

P3
0 3 24

P4 P1
169

P2

Average waiting time: 3+16+9+0
4 = 7.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 240 / 407

Predicting Lengths of Future CPU Bursts

Make an assumption

Next CPU burst likely similar to the past bursts.

tn—actual length of the CPU burst n.

τn+1—predicted value of the next burst.

0 ≤ α ≤ 1.

τn+1 = αtn + (1− α)τn.

We can tune this model through α (usually set to 0.5).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 241 / 407

Example Prediction of CPU Bursts

6 4 6 4 13 13 13 …
810 6 6 5 9 11 12 …

CPU burst (ti)

"guess" (τi)

ti

τi

2

time

4

6

8

10

12

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 242 / 407

Predicting Lengths of Future CPU Bursts

Model of CPU Burst Lengths

τn+1 = αtn + (1− α)τn

α = 0, τn+1 = τn—recent history does not count.

α = 1, τn+1 = tn—only the actual last CPU burst counts.

Expand the formula:
τn+1 = αtn + (1− α)αtn−1 + · · ·+ (1− α)jαtn−j + · · ·+ (1− α)n+1τ0.

Example: α = 0.5, τ4 = 0.5t3 + 0.25t2 + 0.125t1 + 0.0625τ0.

Exponential average of past CPU bursts

Each successive term has lower weighting than the newer ones, with the initial guess having
the lowest.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 243 / 407

Shortest-remaining-time-first

If we allow SJF to be preemptive, it can interrupt a currently running process if it would run
longer than some new process.

Consider

Process Arrival time Next burst time

P1 0 8
P2 1 4
P3 2 9
P4 3 5

P4
0 1 26

P1 P2
10

P3P1
5 17

Average waiting time is 6.5—standard SJF would result in 7.75.
M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 244 / 407

Shortest-remaining-time-first (Question, 3min)

Take 3 minutes to schedule the following processes with a preemptive shortest-job-first
scheduler. Feel free to discuss with your peers. Volunteers for the solution welcome at the
end.

Process Arrival time Next burst time

P1 0 8
P2 1 9
P3 2 7
P4 3 2
P5 4 3

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 245 / 407

Shortest-remaining-time-first (Question, 3min)

Take 3 minutes to schedule the following processes with a preemptive shortest-job-first
scheduler. Feel free to discuss with your peers. Volunteers for the solution welcome at the
end.

Process Arrival time Next burst time

P1 0 8
P2 1 9
P3 2 7
P4 3 2
P5 4 3

Answer

P1 runs 0 to 3; P4 interrupts, runs 3 to 5; P5 runs 5 to 8; P1 continues, runs 8 to 13; P3 then
runs; finally P2 is run.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 246 / 407

Priority Scheduling

Priority scheduling

Shortest-job-first is a specific case of general scheduler that decides by priorities.

A priority (integer) associated with each process.

CPU allocated to a process of highest priority.

Starvation—low priority processes may not execute.

Aging—increase the priority proportional to waiting time.

Internal priorities—time limits, memory requirements, ratio of average I/O burst.

External priorities—importance of the process, type and amount of funds being paid for
the CPUs, who is asking to run the process, and other.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 247 / 407

Priority Scheduling

Process Burst time Priority

P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

Preemptive priority scheduling

Priorities may change while a process is running.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 248 / 407

Questions?

“they wrote up a fix and beamed the new
code across millions of miles to Pathfinder.
What was the solution they sent flying
across the solar system? Priority inheri-
tance.”

From Algorithms to Live By, Chapter
5 on Scheduling.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 249 / 407

Round Robin (RR) Scheduling

Time quantum (q) is defined.

CPU scheduler assigns the CPU to each process for an interval of up to 1 quantum.

Queue treated as First-In-First-Out.

Interrupts every quantum to schedule next process.

RR is therefore preemptive.

No process allocated for more than q in a row (unless there is only one).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 250 / 407

Round Robin (RR) Scheduling

If there are n processes waiting, each process is guaranteed to get 1/n of CPUs time in
chunks of time quantum q.

Each process must wait no longer than (n − 1)× q time units until its next turn to run.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 251 / 407

Round Robin (RR) Scheduling

Take q = 4.

Process Burst time

P1 24
P2 3
P3 3

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1

Small quantum—too many interrupts will reduce performance.

Big quantum—scheduler similar to FCFS.

Need a balance (according to OSC, usually q = 10 to 100 ms).

Context switch around 10 microseconds (small fraction of q).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 252 / 407

Round Robin (RR) Scheduling

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 253 / 407

Round Robin (RR) Scheduling

Turnaround time depends on the
size of the quantum.

However, it does not necessarily
improve with the size of q.

Rule of Thumb

80% of CPU bursts should be shorter than
q.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 254 / 407

Round Robin (RR) Scheduling (Question, 3min)

Take 3 minutes to schedule the following process queue with a round robin scheduler with
q = 3. Feel free to discuss with your peers. Volunteers for the solution welcome at the end.

Process Burst time

P1 5
P2 12
P3 3
P4 1

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 255 / 407

Round Robin (RR) Scheduling (Question, 3min)

Take 3 minutes to schedule the following process queue with a round robin scheduler with
q = 3. Feel free to discuss with your peers. Volunteers for the solution welcome at the end.

Process Burst time

P1 5
P2 12
P3 3
P4 1

Answer

P1 runs 0 to 3; P2 runs 3 to 6; P3 runs 6 to 9; P4 runs 9 to 10; P1 runs 10 to 12; P2 runs 12
to 15; P2 15 to 18; P2 runs 18 to 21.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 256 / 407

Part IV: Optimizations of Process Scheduling

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 257 / 407

Multilevel Queue Scheduling

With previous algorithms, it takes O(n) to search the queue.

Assign processes to different queues, by priority.

Can also assign to queues by process types:
1 Queue for background processes (for example, batch processing)
2 Queue for foreground processes (interactive)

Each queue can have different scheduling algorithms, depending on needs.

Scheduling may be required among queues: commonly fixed-priority preemptive
scheduling.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 258 / 407

Multilevel Queue Scheduling

Example queues in decreasing priority level:

1 Real-time precesses

2 System processes

3 Interactive processes

4 Batch processes

Multilevel priority queue

No process in a lower priority queue runs while there are processes waiting in the higher
priority queues. High priority queues preempt lower priority ones.

Time slicing

Another possibility is to allocate time among queues. Example: 80% to foreground queue and
20% to the background queue.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 259 / 407

Multilevel Feedback Queue Scheduling

Dynamic queueing

Instead of fixing processes to queues, allow them to move.

Multilevel feedback queue defined by

number of queues,

a scheduling alg. for each queue,

a method to upgrade a process to higher priority queue,

a method to downgrade a process, and

a method to determine which queue to assign process at the start.

Multilevel feedback queue

Most general CPU scheduling algorithm due to many parameters in the definition.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 260 / 407

Multilevel Feedback Queue Scheduling (Example)

Three queues (from the top):

Q0—RR with q = 8 ms.

Q1—RR with q = 16 ms.

Q2—FCFS.

Scheduling:

1 A new job enters Q0 and gets 8 ms.

2 Not finished in 8 ms—move to Q1.

3 Not finished in queue 1 in another 16
ms—move to Q2.

4 Scheduled in FCFS in Q2 when queue
0 and 1 empty.

Starvation in Q2

To prevent starvation we may move old
processes to Q0/1.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 261 / 407

Advantages and Disadvantages of Scheduling Algorithms

Algorithm (dis)advantages

FCFS Convoy effect a problem—long jobs hold the queue.
SJF Need to predict future CPU burst lengths.
Preemptive SJF Better average waiting time than SJF.
Priority scheduler Starvation.
RR Need to tune time quantum to avoid expensive con-

text switch.
Multilevel queue Faster search than O(n).
Multilevel feedback queue Configuration can be expensive. Starvation.

Practice

There is no perfect algorithm for all cases. It is a tradeoff based on requirements of the system
and usually a combination of scheduling algorithms is implemented (See OSC OS examples [1,
Sec. 5.7]).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 262 / 407

Questions?

“In fact, the weighted version of Shortest
Processing Time is a pretty good candi-
date for best general-purpose scheduling
strategy in the face of uncertainty.”

From Algorithms to Live By, Chapter
5 on Scheduling.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 263 / 407

Vevox quiz

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 264 / 407

Part V: Remarks on Multi-Processor Scheduling

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 265 / 407

Multi-Processor Scheduling

Traditionally term multi-processor referred to systems with multiple physical cores. Now we
use it to describe systems with either several physical or virtual cores/threads.

One approach to scheduling is to have one master processor handling scheduling (assymetric
multiprocessing). Master becomes potential bottleneck.

Another is symmetric multiprocessing (SMP)—each processor handles its scheduling. Most
common (Windonws, Linux, macOS, Android, iOS).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 266 / 407

Multi-Processor Scheduling: SMP

Two approaches in SMP

1) Common ready queue—each processor takes processes/threads from that queue (potential
clashes). 2) Each processor has its own queue.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 267 / 407

Multicore Processors

Relatively recent trend is to place multiple cores on chip (multicore).

Speed and energy efficiency.

Memory stall—cores spend significant amount of time for memory (since these days
cores are much faster than memory).

Multithreading—hardware assisted mutliple threads per core.

When one thread is in memory stall, work on another.

OS sees different hardware threads as separate CPUs.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 268 / 407

Multicore Processors: Two Levels of Scheduling

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 269 / 407

Load balancing

With SMP we need to utilize all CPUs efficiently.

Load balancing attempts even distribution.

Only necessary on systems with separate queues for each CPU.

Push migration—a task checks the load on each CPU and moves threads from CPU to
CPU to avoid imbalance.

Pull migration—idle processor pulls waiting tasks from busy processors.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 270 / 407

Processor Affinity

When a thread runs on a core, the cache is “warmed up” for that thread.

We say that a task has affinity for the processor it’s running on.

When a task is moved, say due to load balancing, we have a big overhead in terms of
cache.

Invalidating and repopulating caches is expensive.

Soft affinity—OS will attempt to keep the process on the same core, but load balancing
can move it.

Hard affinity—processes specify a list of processes on which to run.

Usually both methods are available.

Implications on scheduling

Load balancing and processor affinity both may have implications on scheduling.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 271 / 407

Questions?

“the Linux core team, several years ago,
replaced their scheduler with one that was
less “smart” about calculating process
priorities but more than made up for it by
taking less time to calculate them.”

From Algorithms to Live By, Chapter
5 on Scheduling.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 272 / 407

Part VI: Scheduling with Deadlines: Real-Time Processing

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 273 / 407

Real-Time CPU Scheduling

Real-time systems categorized into two:
1 Soft real-time: guarantee preference for critical processes.
2 Hard real-time: guarantee completion by deadline.

Two types of latencies affect performance:
1 Interrupt latency: time from arrival to interrupt service routine.
2 Dispatch latency: time for dispatcher to stop current process and start another.

Hard real-time systems

Various latencies should be bounded to meet the strict requirements of these systems.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 274 / 407

Real-Time CPU Scheduling

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 275 / 407

Real-Time CPU Scheduling

response to event

real-time
process

execution

event

conflicts

time

dispatch

response interval

dispatch latency

process made
availableinterrupt

processing

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 276 / 407

Priority-Based Scheduling

Real-time systems

It is essential to have a priority-based preemptive scheduling for real-time systems. Usually
real-time processes have highest priority.

Priority-based preemptive scheduling gives us soft real-time functionality.

Additional scheduling features required for hard real-time.
Some definitions:

Processes are periodic—require CPU at constant intervals.

Processing time t, deadline d , period p. Here 0 ≤ t ≤ d ≤ p.

Admission control

Schedulers take advantage of these details and assign priorities based on deadlines and period.
Admission control algorithm may reject the request as impossible to service by the required
deadline.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 277 / 407

Priority-Based Scheduling

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 278 / 407

Rate-Monotonic Scheduling

Upon entering the system, each periodic task assigned priority ∝ 1
p .

Rationale: prioritize processes that require CPU more often.

Example:

Process p t d

P1 50 20 50
P2 100 35 100

P1 has higher priority since the period is shorter.

Rate-monotonic scheduler:

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 279 / 407

Rate-Monotonic Scheduling

Now we make the requirements more strict for P2:

Process p t d

P1 50 25 50
P2 80 35 80

P1 has higher priority since the period is shorter.

Rate-monotonic scheduler:

P2 failed to complete by d = 80! The total CPU utilization is 25/50 + 35/80 = 0.94, but the
problem was that the scheduler starts P1 again before P2 completes.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 280 / 407

Earliest-Deadline-First Scheduling

I think you have been using this one in the past weeks! ,

Priorities not fixed in advance—the earlier the deadline, the higher priority.

At time 50 process P2 is not preempted by P1 because its next deadline (80) is earlier than
process P1’s next deadline at time 100.

EDF Scheduling

No requirement of the period, just the deadline, therefore processes do not need to be periodic
as with rate-monotonic scheduling.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 281 / 407

Earliest-Deadline-First Scheduling (Question, 5min)

Take 5 minutes to schedule the following process queue with a Earliest-Deadline-First
Scheduling. Feel free to discuss with your peers. Volunteers for the solution welcome at the
end.

Process p t d

P1 50 30 50
P2 70 40 70

Don’t forget the aforementioned admission control.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 282 / 407

Earliest-Deadline-First Scheduling (Question, 5min)

Take 5 minutes to schedule the following process queue with a Earliest-Deadline-First
Scheduling. Feel free to discuss with your peers. Volunteers for the solution welcome at the
end.

Process p t d

P1 50 30 50
P2 70 40 70

0 30

P1, P2 P1

70
P1 P2

P2 P1

P1
100 140

P2

P2 P1

150
P1

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 283 / 407

Scheduling in XV6

Scheduling occurs in two situations:

Running process runs sleep or wait.

XV6 periodically forces scheduling (round-robin with quantum of ∼ 100 ms).

Scheduler exists as a separate thread per CPU.

Queue of up to 64 processes available.

See kernel/proc.c for further detail. Scheduler in the function void

scheduler(void).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 284 / 407

Questions?

“there’s no choice but to treat that
unimportant thing as being every bit as
important as whatever it’s blocking.”

From Algorithms to Live By, Chapter
5 on Scheduling.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 285 / 407

COMP2211: Progress

Week Topic

1 Introduction to OS
2 OS services
3 Processes
4 Xv6: Live coding and Q&A from the xv6 book
5 Reading week. No scheduled labs or lectures
6 Threads and concurrency.
7 Scheduling
8 Process synchronisation
9 Memory management
10 Catch up
11 Module review

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 286 / 407

Progress

Week Topic

1 Introduction to OS
2 OS services
3 Processes
4 Xv6: Live coding and Q&A from the xv6 book
5 Reading week.
6 Threads and concurrency.
7 Scheduling
8 (current) Process synchronisation

9 Memory management
10 Catch up
11 Module review

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 287 / 407

Reading List

We will be mainly using the Operating System Concepts (OSC) 10th ed., 2018, and the 4th
edition of the xv6 book (XV6), 2024. These slides are based on OSC (see the reference list).

Week Reading materials

1 Chapter 1 OSC. Chapter 1 XV6.
2 Chapter 2 OSC. Chapter 2 XV6.
3 Chapter 3 OSC.
4 Reread Chapters 1–2 XV6.
5 Reread Chapters 1–3 OSC.
6 Chapter 4 OSC.
7 Chapter 5 OSC.
8 (current) Chapter 6 OSC (Chapters 7 and 8 additional).

9 Chapters 9–10 OSC. Chapter 3 XV6.
10 Reread Chapters 4–6 OSC.
11 Reread Chapters 9–10 OSC.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 288 / 407

Objectives

Discuss why we need process synchronisation.

Present various solutions: hardware and API level.

Discuss new challenges that those solutions introduce.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 289 / 407

Part I: Description of the Problem

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 290 / 407

Process Synchronisation: Motivation

By now we know that OS typically consists of many processes/threads running either
concurrently or in parallel.

Threads often share data.

OS continually updates various data structures to support multithreading.

Multiple threads may want to update shared data at the same time.

If access to shared data is not controlled, we may get corrupted data values.

Process synchronisation involves methods for control of access to shared data to avoid
such issues.

This week we will learn to recognize the need for process synchronisation.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 291 / 407

Process Synchronisation: A Few Reminders

Recall cooperating processes that can affect or be affected by other processes.

Shared data through shared memory or message passing. Concurrent access may cause data
inconsistency.

Last week we studied scheduling, which is the key in achieving concurrency:

Scheduler rapidly switches between processes.

One process may be interrupted at any time by another.

Processes in reality may be interrupted hundreds of times, pausing what they are doing.

Parallelism involves multiple instruction streams running at the same time.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 292 / 407

Example 2-thread code in Pthreads: who can spot a problem?

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 293 / 407

Race conditions

A Race condition arises when several processes manipulate data concurrently.

Outcome of execution depends on a particular order.

It is usually difficult to predict the order of execution and it may change on different runs of a
multithreaded application.

In our example we need to make sure that only one thread can manipulate x at any time.

We need some way of synchronizing processes/threads.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 294 / 407

Race conditions

Race conditions can arise in OS as different parts manipulate shared resources.

Race conditions also arise in multithreaded user applications.

Increasing use of multicore systems makes this an important problem.

Applications are being developed to run in parallel on many cores, sharing data among
different parts.

Mechanisms to secure against race conditions is an important part of the systems these
days.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 295 / 407

The Critical-Section Problem

Consider a system with n processes/threads P0,P1, ...,Pn−1.

Each process has a critical section of code.

In that section, shared data is being accessed (shared among at least two processes).

When a process is executing instructions in the critical section, no other process can do
so.

Each process must request permission to enter their critical section.

The entry section implements the
request.

The exit section may do some
tidying up after the critical section.

The rest of the code is called the
remainder section.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 296 / 407

The Critical-Section Problem

A solution to this problem should meet the following.

1 Mutual exclusion: Only one Pi can be in a critical section.

2 Progress: If one process asks to execute its critical section, only processes not in their
remainder section can participate.

3 Bounded waiting: There should be a limit on a number times other processes can enter
their critical sections, when some other process is waiting. Avoid the problem of process
starvation (see W7 on scheduling).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 297 / 407

Part II: Software Solutions to Process Synchronisation

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 298 / 407

Race Conditions in the Kernel: File Opening/Closing

Consider a kernel data structure that maintains a list of open files in the system.

It must be modified when a new file is opened/closed.

If two processes open/close files simultaneously, there may be a race condition on this data
structure.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 299 / 407

Race Conditions in the Kernel: Getting PIDs

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 300 / 407

The Critical-Section Problem

The critical-section problem can be solved in single-core environment by disabling interrupts
during the execution of critical code.

One sequence of instructions would be run and we would know that nothing interferes with the
section that modifies the shared data.

In a multiprocessor environment this is not going to work since two or more cores can write to
a shared location at the same time.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 301 / 407

The Critical-Section Problem in the Kernel

Two approaches are used in kernels:

1 Preemptive kernels

2 Nonpreemptive kernels

The latter does not allow processes to be interrupted while they are in kernel mode. Safe from
race conditions on kernel data structures.

Preemptive kernels need to solve the critical-section problem.

Preemptive vs nonpreemptive kernels

Why would anyone favour preemptive kernels if they have this problem? More responsive since
there is less risk of lengthy processes holding the CPU.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 302 / 407

Basic Software Solution to the Critical-Section Problem

Peterson’s solution.

No guarantee this works on modern
architectures.

Good starting point to understand solutions.

Restricted to two processes: P0 and P1.

When talking about Pi we use Pj to refer to
the other process.

while (true){

flag[i] = true;
turn = j;
while (flag[j] && turn = = j)

;

/* critical section */

flag[i] = false;

/* remainder section */

}

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 303 / 407

Basic Software Solution to the Critical-Section Problem

Variables turn and flag shared.

turn indicates whose turn it is to enter the
crit. sec.

flag[i] indicates whether process i is ready
to enter the crit. sec.

All 3 conditions of the crit. sec. problem
solution are met.

See OSC p. 263 for proof.

while (true){

flag[i] = true;
turn = j;
while (flag[j] && turn = = j)

;

/* critical section */

flag[i] = false;

/* remainder section */

}

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 304 / 407

Peterson’s Solution on Modern Architectures: Instruction Reordering

This may not work on modern
architectures due to instruction
reordering.

Instruction reordering is performed
when there are no data
dependencies between them.

On single-threaded applications
reordering does not impact the final
result.

On multi-threaded applications it
may change the final result.

See the example on the right: last
two lines in Thread 2 may be
reordered.

Consider shared data between two threads:

boo l ean f = f a l s e
i n t x = 0

Thread 1:

whi le (! f)
;

p r i n t x ;

Thread 2:

x = 1 ;
f = t r u e ;

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 305 / 407

Peterson’s Solution on Modern Architectures: Instruction Reordering

Consider what happens if the first two lines of
the while loop are reodered.

while (true){

flag[i] = true;
turn = j;
while (flag[j] && turn = = j)

;

/* critical section */

flag[i] = false;

/* remainder section */

}

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 306 / 407

Peterson’s Solution on Modern Architectures: Instruction Reordering

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 307 / 407

Vevox Quiz

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 308 / 407

Part III: Hardware Solutions to Process Synchronisation

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 309 / 407

Hardware Support for Synchronisation

Software-based solutions fall short in solving the synchronisation problems arising in shared
data among threads.

Reason: a programmer provides code in certain order; modern architectures reorder for
performance, when there are no data dependencies.

We will now look at three hardware instructions created specifically for this problem.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 310 / 407

Hardware Support for Synchronisation: Memory Barriers

Memory model

How a computer architecture determines what memory guarantees it will provide.

Two memory model categories:

1 Strongly ordered: memory modifications by one processor are known to other processors
immediately.

2 Weakly ordered: mem. modifications may not be immediately visible.

Kernel developer assumptions on memory models

Memory models vary; developers cannot assume what visibility of memory modifications will
there be in a shared-memory multiprocessor.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 311 / 407

Hardware Support for Synchronisation: Memory Barriers

This issue is addressed by computer architectures providing instructions that force changes in
shared-memory to be propagated to all processors.

This way all threads running on other processors will know about the memory modifications.

Memory barriers/fences

When a processor meets a memory barrier, it makes sure that any memory operations are
completed before starting any subsequent ones (even if reordering has been taking place). This
way other threads see the latest data.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 312 / 407

Hardware Support for Synchronisation: Memory Barriers

boo l ean f = f a l s e
i n t x = 0

Thread 1:

whi le (! f)
;

p r i n t x ;

Thread 2:

x = 1 ;
f = t r u e ;

boo l ean f = f a l s e
i n t x = 0

Thread 1:

whi le (! f)
b a r r i e r () ;

p r i n t x ;

Thread 2:

x = 1 ;
b a r r i e r () ;
f = t r u e ;

Example on the right uses memory barriers to synchronize read/write of x.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 313 / 407

Hardware Support for Synchronisation: Memory Barriers

Let’s return to Peterson’s critical-section problem solution. Threads 1 and 2 run the
following code and share flag and turn. Does not work if first two writes reordered, so add a
barrier there.

whi le (t r u e) {
f l a g [i] = t r u e ;
t u rn = j ;
whi le (f l a g [j] && tu rn == j)

;

/∗ c r i t i c a l s e c t i o n ∗/

f l a g [i] = f a l s e ;

/∗ r ema inde r s e c t i o n ∗/
}

whi le (t r u e) {
f l a g [i] = t r u e ;
b a r r i e r () ;
t u rn = j ;
whi le (f l a g [j] && tu rn == j)

;

/∗ c r i t i c a l s e c t i o n ∗/

f l a g [i] = f a l s e ;

/∗ r ema inde r s e c t i o n ∗/
}

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 314 / 407

Hardware Support for Synchronisation: Hardware Instructions

Modern hardware provides special hardware instructios that allow:

1 Test-and-modify contents of memory.

2 Compare-and-swap two words of memory.

These instructions allow us to resolve the critical section problem.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 315 / 407

Hardware Support for Synchronisation: Test-and-set instruction

boo l ean t e s t a n d s e t (boo l ean ∗ t a r g e t) {
c u r r e n t v a l = ∗ t a r g e t ;
∗ t a r g e t = t r u e ;
return c u r r e n t v a l ;

}

This is a definition of the instruction. Implemented in hardware.

These steps happen atomically—test-and-set cannot be interrupted.

In a multiprocessor, test-and-set also happens sequentially in arbitrary order.

If target stores 1, we will keep keep it unchanged.

If target stores 0, we will return 0 but change target to 1.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 316 / 407

Hardware Support for Synchronisation: Test-and-set instruction

Test-and-set can be used to implement mutual exclusion (critical-section problem
requirement 1).

Each thread initializes a shared lock=0. Only one thread can get the lock and execute its
critical section.

do {
whi le (t e s t a n d s e t (& l o c k))

;

/∗ c r i t i c a l s e c t i o n ∗/

l o c k = 0 ;

/∗ r ema inde r s e c t i o n ∗/
} whi le (t r u e) ;

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 317 / 407

Hardware Support for Synchronisation: Compare-and-swap instruction

i n t compare and wap (i n t ∗ va l , i n t expected , i n t new) {
i n t temp = ∗ v a l ;

i f (∗ v a l == expec t ed)
∗ v a l = new ;

return temp ;
}

This is a definition of the instruction. Implemented in hardware.

These steps happen atomically—compare-and-set cannot be interrupted.

In a multiprocessor, compare-and-set also happens sequentially in arbitrary order.

Set val to new only if the value is what we expected.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 318 / 407

Hardware Support for Synchronisation: Compare-and-swap instruction

Compare-and-swap can be used to implement mutual exclusion.

Each thread initializes a shared lock=0. Only one thread can swap the lock to 1 and execute
its critical section.

wh i l e (1) {
wh i l e (compare and swap(& lock , 0 , 1) != 0)

;

/∗ c r i t i c a l s e c t i o n ∗/

l o c k = 0 ;

/∗ r ema inde r s e c t i o n ∗/
}

First process to call
compare-and-swap will set lock=1.

Then it will enter its critical section
because comparison returned 0.

Other calls to compare-and-swap
won’t succeed since lock now is not
equal to the expected value of 0.

The process exiting its critical section
will release the lock, allowing others
to execute their critical sections.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 319 / 407

Hardware Support for Synchronisation

Remember the three requirements of the critical-section problem solution:

1 Mutual exclusion: Only one Pi can be in a critical section.

2 Progress: If one process asks to execute its critical section, only processes not in their
remainder section can participate.

3 Bounded waiting: There should be a limit on a number times other processes can enter
their critical sections, when some other process is waiting. Avoid the problem of process
starvation (see W7 on scheduling).

Test-and-set and compare-and-swap

The solutions presented above do not meet the bounded waiting requirement: a thread may
be stuck at the atomic instructions, waiting, while other threads keep getting the lock. See
OSC for a solution.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 320 / 407

Hardware Support for Synchronisation: Atomic Variables

compare-and-swap instruction is often used to build other tools for synchronisation.

Atomic variables provide atomic operation on basic data types; only one thread at a time can
modify them.

They can be used to avoid race conditions on single shared variables, when multiple threads
are updating them.

Most systems that support atomic variables also provide atomic data types and operations on
them.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 321 / 407

Hardware Support for Synchronisation: Atomic Variables

Below we show how an integer can be atomically incremented using compare-and-swap.

void i n c r ement (a t om i c i n t ∗ va r) {
i n t temp ;
do {

temp = ∗ va r ;
} whi le (temp != compare and swap (var , temp , temp+1)) ;

}

Compare-and-swap will only increment temp when it hasn’t changed since we set it.

Atomic variables

These variables are useful in operating systems for limited uses, such as updating
single-variable features like counters.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 322 / 407

Part IV: Other Solutions to Process Synchronisation

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 323 / 407

Other Solutions to Process Synchronisation

Hardware-based solutions are complicated and too low-level for application programmers to
access.

Higher-level software tools are usually available in operating systems.

Mutex locks

Semaphores

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 324 / 407

Mutex Locks

A process must acquire a mutex lock
before entering a critical section.

It releases the lock when it exits the
critical section.

whi le (t r u e) {
/∗ a c q u i r e l o c k ∗/

c r i t i c a l s e c t i o n
/∗ r e l e a s e l o c k ∗/
r ema inde r s e c t i o n

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 325 / 407

Mutex Locks

The acquire() function acquires the lock:

a c q u i r e () {
whi le (! a v a i l a b l e)

; /∗ busy wa i t ∗/
a v a i l a b l e = f a l s e ;

}

The release() function releases it:

r e l e a s e () {
a v a i l a b l e = t r u e ;

}

Implementations must assure calls to these are atomic.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 326 / 407

Example 2-thread code in Pthreads: Use of a Mutex

Modify our example code on Slide 8 to use mutex locks.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 327 / 407

Semaphores

Mutex lock disadvantages

Mutex locks require busy waiting: while a process is in its critical section, other processes
loop continuously trying to acquire the lock, until the process holding it releases it.

Another method can provide more sophisticated ways for synchronisation:

A semaphore S is an integer variable.

S is only accessed through atomic operations wait() and signal().

wa i t (S) {
whi le (S <= 0)

;
S−−;

}

s i g n a l (S) {
S++;

}

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 328 / 407

Semaphores: Use for Access Control to Resources

We can use semaphores to control access to a limited number of resources.

Initialize S to the number of resources available.

Processes that wish to use one of the resources call wait(): decrement S.

Processes that release resources call signal(): increment S.

When S=0 all resources have been taken and processes need to block until some become
available.

Because semaphore modifications are atomic, no two processes can capture the same
resource.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 329 / 407

Semaphores: Use for Synchronisation

Take two concurrent processes P1 and P2.

Each has some code S1 and S2, respectively.

Suppose we want S1 to go first followed by S2 (not guaranteed when code runs in
parallel).

Create a semaphore synch=0.

In P1 we do:

S1 ;
s i g n a l (synch) ;

In P2 we do:

wa i t (synch) ;
S2 ;

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 330 / 407

Implementing Semaphores

When wait() is called and the process must wait for the semaphore, it will pause itself
(no busy waiting).

The process goes to the waiting queue and the scheduler selects another.

The process is restarted when some other process calls signal().

Goes from the waiting queue to the ready queue.

The scheduler may pick it up for running on the CPU.

See OSC Section 6.6.2 for the pseudo code that achieves this.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 331 / 407

Vevox Quiz

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 332 / 407

Part V: Other Problems in Synchronisation

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 333 / 407

Liveness

Using synchronisation tools to coordinate processes introduces a possibility for processes
to wait indefinitely.

Recall three requirements for a solution to the critical-section problem.

Mutual exclusion, progress, bounded waiting.

Waiting for an undefined amount of time for a lock violates some of these.

Liveness: a system must ensure that processes can make progress.

A process waiting indefinitely means our operating system produces a liveness failure.

Providing semaphores and mutex locks opens up a possibility for liveness failure

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 334 / 407

Liveness: Deadlock (Initially S=Q=1)

P0

wa i t (S)
wa i t (Q)

.

.

.
s i g n a l (S)
s i g n a l (Q)

P1

wa i t (Q)
wa i t (S)

.

.

.
s i g n a l (Q)
s i g n a l (S)

Deadlock

Every process in the set is waiting for an event that can only be caused by another process in
that same set. Since that other process is also waiting, no progress will be made and the set is
deadlocked.

See OSC Chapter 8 for further detail (optional reading).
M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 335 / 407

Liveness: Priority Inversion

Consider a scenario where a higher-priority process needs to read/modify kernel data held
by a mutex lock by a lower-priority process.

High priority process waits for lower-priority one: a scheduling problem (see
priority-based schedulers in Week 7).

Priority inversion example

Take processes A, B, C with priorities A > B > C . Imagine that process A wants a semaphore
S , which is held by C . Then imagine that process B preempts C and gets scheduled since it is
of higher priority. B has affected how long a higher-priority process A must wait for the
semaphore.

Avoid by implementing a priority-inheritance protocol.

If a process accesses a resource needed by a higher-priority process, it inherits that
higher-priority.

The priority is reduced back to the original priority when the resource is released.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 336 / 407

COMP2211: Progress

Week Topic

1 Introduction to OS
2 OS services
3 Processes
4 Xv6: Live coding and Q&A from the xv6 book
5 Reading week. No scheduled labs or lectures
6 Threads and concurrency.
7 Scheduling
8 Process synchronisation
9 Memory management
10 Catch up
11 Module review

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 337 / 407

Progress

Week Topic

1 Introduction to OS
2 OS services
3 Processes
4 Xv6: Live coding and Q&A from the xv6 book
5 Reading week. No scheduled labs or lectures
6 Threads and concurrency.
7 Scheduling
8 Process synchronisation
9 (current) Memory management

10 Catch up
11 Module review

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 338 / 407

Objectives

Discuss why memory management is required in Operating Systems.

Introduce paging.

Introduce virtual memory.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 339 / 407

Reading List

We will be mainly using the Operating System Concepts (OSC) 10th ed., 2018, and the 4th
edition of the xv6 book (XV6), 2024. These slides are based on OSC (see the reference list).

Week Reading materials

1 Chapter 1 OSC. Chapter 1 XV6.
2 Chapter 2 OSC. Chapter 2 XV6.
3 Chapter 3 OSC.
4 Reread Chapters 1–2 XV6.
5 Reread Chapters 1–3 OSC.
6 Chapter 4 OSC.
7 Chapter 5 OSC.
8 Chapters 6–8 OSC.
9 (current) Chapters 9–10 OSC. Chapter 3 XV6.

10 Reread Chapters 4–6 OSC.
11 Reread Chapters 9–10 OSC.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 340 / 407

Part I: Description of the Problem

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 341 / 407

Introduction

Memory operations

CPU can only access registers and main memory directly, with cache in between.

Programs loaded from disk to memory, within process’ memory structure.

CPU sends to the memory unit either

address and read requests, or
address, data, and write requests.

Register access 1 clock cycle.

Main memory: multiple cycles (LD/ST instructions). Causing a stall in CPU.

Cache helps reduce stall times.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 342 / 407

Introduction

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 343 / 407

Memory protection

Why we need memory protection

Processes should only be able to access
their addresses space. We do not want
them to be able to impact each other (or
the OS) directly.

Each process memory is limited by
the limit.

Addresses have to lie between a
limited range, starting at base
address.

Error if address > base+limit.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 344 / 407

Memory protection

Base and limit registers

These registers can be accessed only by privileged instructions in kernel mode. Only the OS
can modify them, protecting users from modifying the size of the address space.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 345 / 407

Address binding

Programs on disk have to be moved into memory eventually, for execution.

We will place them in some location, not necessarily at address 0000.

How to represent addresses before the decision of placement is made?

Source programs contain symbolic addresses that the compiler bind to relocatable
addresses, relative to some reference address that is set later.

Linker or loader will bind these to absolute addresses.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 346 / 407

Address binding

Address binding can happen at various stages of program lifetime:

Compilation: if placement memory location is known, compiler can produce absolute
addresses within the binary. Recompilation needed if location changes.

Loading: take relocatable code from the compiler and transfer relative addresses to
absolute addresses.

Execution: if processes can move in memory during execution, then address binding has
to be delayed until this time. This is a most common set-up in operating systems today.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 347 / 407

Address binding

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 348 / 407

Logical and physical address spaces

Logical address (virtual address)

Generated by the CPU.

Physical address

Address that the memory unit works with.

Sets of addresses available: logical address space and physical address space.

Compile-time and load-time binding results in equivalent logical and physical addresses.
Execution-time binding makes processes think their address starts at 0000 and separate
mapping is done to the physical address space.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 349 / 407

Memory-management unit

Base register now called relocation register.

Value of relocation register is added to every (virtual) address generated by user
program.

User program never sees actual physical addresses.

Execution-time address binding done on memory accesses, by the MMU.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 350 / 407

Memory-management unit

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 351 / 407

Dynamic loading

Load routines when needed

Entire program does not need to be copied in memory.

Load some parts of it only when they are called.

Memory utilization is improved because routines that are not used are never loaded.

All code kept in relocatable load format on disk.

Rarely called large routines do not need to be in memory for the lifetime of the process.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 352 / 407

Dynamic linking

Static linking

System libraries and program code are combined into a binary executable.

Dynamic linking postpones this until execution.

Commonly used with system libraries: do not put them into the executable at all until
called.

Allows to share system libraries among process (Dynamically Linked Libraries - DLL, or
shared libraries).

Helps versioning: a new version of DLL can be updated in memory and all programs that
reference it will dynamically link to the new version - no need to relink.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 353 / 407

Loading and linking

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 354 / 407

Part II: Contiguous Memory Allocation

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 355 / 407

Contiguous memory allocation

Contiguous memory allocation

OS and processes have to live in memory in order to all run concurrently, requiring efficient
allocation of their memory areas. Contiguous allocation of the memory space is one way to
implement this.

Partition memory into two parts:

1 area for the operating system, and

2 area for processes, stored in single contiguous blocks.

Need for memory protection

Need to protect OS and processes, that are stored in the same memory space, from each other.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 356 / 407

Memory allocation

Keep track of free and occupied partitions.

At start, memory is one big free block.

Allocate variable size partitions as required.

Memory holes of variable size form.

When a process exits, it leaves a memory hole that is merged with adjacent holes.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 357 / 407

Memory allocation

Given an allocation request of N bytes, how to determine which memory hole to return?

First-fit: allocate the first free memory area of size N or larger.

Best-fit: Search the list of free memory areas and allocate the smallest that fits N bytes
(best case scenario is we find a memory hole of N bytes).

Worst-fit: Allocate the largest free memory area available of size at least N.

Internal fragmentation

Allocated memory is larger than N, the requested size. The extra bytes in the allocated block
are unused. Arises when memory is split into fixed-sized partitions.

External fragmentation

N bytes exist to satisfy the request for memory, but the space is not contiguous. Memory is
broken into many small pieces.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 358 / 407

Reducing external fragmentation

Compaction

Shuffle memory contents to merge all free memory holes into one contiguous space. Dynamic
relocation is required for this to work, during execution. Require moving the program and data
and updating the relocation register to reflect the change in the starting address.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 359 / 407

Vevox quiz

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 360 / 407

Part III: Paging

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 361 / 407

Motivation

Why use paging memory management technique

Previous techniques require memory to be contiguous, which introduces memory gaps and
external fragmentation (requiring compaction). Paging allows processes to see contiguous
memory space despite actual data stored in separate places in the physical memory.

Paging

A method that allows processes memory space to be fractured, but still look contiguous from
process’ perspective. Paging is implemented in collaboration between OS and the hardware. It
is in widespread use today.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 362 / 407

Basic method

Divide physical memory space into fixed-size blocks, frames

Divide virtual memory space into fixed-size blocks, pages

Keep track of free frames

When program requires N pages, N free frames have to be found

Page tables map pages to frames (virtual addresses to physical addresses).

Virtual addresses

CPU generates addresses comprised of page number p and the page offset d . Entry p in the
page table contains a base address of the corresponding frame in the physical memory. Then
the offset d allows to find a specific memory address within the frame.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 363 / 407

Hardware support

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 364 / 407

Paging example

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 365 / 407

Example (4-bit logical address: 2-bit page number, 2-bit address offset)

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 366 / 407

Paging

Key remarks about paging:

No external fragmentation: any free frame can be allocated to a process.

Internal fragmentation present: for example, page size is 4 bytes and process requests 10
bytes of memory; we will allocate 3 pages (12 bytes).

Page sizes

Today pages are typically 4 or 8 KB in size. Some systems support two page sizes which
includes an option for huge pages.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 367 / 407

Frame allocation to pages

The main steps:
1 Process requiring execution arrives in the system.
2 Size in terms of pages is determined: ⌈ size

pagesize ⌉ (number of pages required).
3 Each page requires a frame in physical memory.
4 If a process requires N pages, N frames need to be available.
5 First page is loaded into an allocated frame.
6 Frame number is written to the page table.
7 Repeat two previous steps until all pages are copied into frames and the page table of the

process is fully set up. Process can then start and use logical addresses.

Programmer’s view of memory

Paging allows programmer’s view of memory to be separated from the physical memory.
Programmer sees a contiguous area of memory available for a particular program. The
program in reality is scattered across physical memory, with frames sitting amongst frames of
other programs.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 368 / 407

Frame allocation to pages (a: before allocation, b: after allocation)

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 369 / 407

Paging: implementation

Each process has a page table stored in the main memory.

Process Control Block of each process stores the address of the page table.

When scheduler selects a process, it must set up the hardware page table by getting the
copy from the memory.

Simple hardware page table

Set of high-speed registers.
Translation of logical addresses fast.
Context switch time increases because these registers have to be exchanged.

PTRB register

Most CPUs support large tables (for example, 220 entries)—register approach not feasible.
Page table kept in memory and page table base register (PTBR) points to it. Context
switch requires only one register swap.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 370 / 407

Translation look-aside buffers

Page tables in memory

When page tables are stored in memory, process data/instruction access requires two memory
operations, one for the page tables and another for the actual data.

Translation look-aside buffer (TLB)

This technique is also called associative memory. Fast memory for storing commonly
accessed frame addresses, typically 32 to 1024 entries. When CPU accesses memory, MMU
first checks if page number is in the TLB and uses it if so. Otherwise (TLB miss) it gets the
frame number from memory and updates the TLB.

TLBs in practice

Modern CPUs provide multi levels of TLBs. For example Intel Core i7 has 128-entry L1
instruction TLB and 64-entry data TLB. When TLB miss occurs, it checks in the 512-entry L2
TLB. In case of another TLB miss, page table in the main memory is looked at.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 371 / 407

Translation look-aside buffers

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 372 / 407

Memory protection with pages

Page table can store read-only or
write-only bits to mark
restrictions in certain pages.

valid bit indicates that the page
is in the logical address space of
the process.

invalid indicates that it is out of
bounds of the logical address
space.

Access to pages marked invalid
will result in error.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 373 / 407

Protection with pages

Page-table length register (PTLR)

Instead of storing unused pages we may have a PTLR register that stores the size of the page
table. This can be used for memory protection together with the PTBR.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 374 / 407

Shared pages

Paging allows for efficient
sharing of code between
processes.

Reentrant code means that the
code of the library is not
self-modifying.

All processes can read it at the
same time.

For example, with shared pages,
no need to have the copy of
libc C standard library in each
processes’ memory.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 375 / 407

Hierarchical paging

Page tables in practice would be too large; they are split up in multiple layers to reduce size.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 376 / 407

Hierarchical paging address translation

64-bit architectures

For 64-bit architectures even the two-level hierarchical page table requires too many entries.
Other solutions are hashed page tables and inverted page tables—check OSC Chapter 9
for details.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 377 / 407

Part IV: Memory Swapping

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 378 / 407

Standard swapping

Process instructions and data have to reside in memory for execution.

When not executing, a process can be swapped out into disc and brought back into
memory later.

Why? When main memory is at its limit, to make space for something with higher priority.

Swapping allows for the total memory to look larger than the available physical memory.

If N processes are executing, but only N/2 can fit into memory, the users still see that all
N are working even though half of them are swapped out into disc.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 379 / 407

Standard swapping

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 380 / 407

Swapping with paging

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 381 / 407

Swapping in mobile systems

Most OS on PCs and high-performance computers support swapping with pages.

On mobile systems typically this is not available.

On mobile systems flash memory available instead of large hard drives.

Space limitation and flash memory degradation due to writing operations make swapping
not practical.

Instead, iOS for example asks applications to release some memory.

May forcibly terminate some processes when out of main memory.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 382 / 407

Vevox quiz

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 383 / 407

Part V: Virtual Memory

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 384 / 407

Virtual memory: introduction

Memory management we discussed so far is stemming from a basic requirement:
instructions should be in memory for execution.

Downside: the size of the program limited to the size of physical memory.

The entire program may not be needed; examples:

code for error conditions; errors rarely occur,
large arrays when not all elements are used, and
generally, features of large programs that are rarely used.

Store the program in memory only partially?

Benefits:

Program sizes not constrained by physical memory size,

more programs can be ran concurrently, and

less I/O needed when loading/swapping programs.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 385 / 407

Virtual memory: introduction

Virtual memory

Provide an extremely large memory space for the programmer’s view: logical space. This
space is implemented by a combination of smaller physical memory space and large (but
slow) disk space, by moving pages between the disk and the physical space as required.

Programmer’s view

Virtual memory allows the programmer not to worry about the physical space limitations and
concentrate on solving the problem in the virtual space. The virtual space starts at a certain
address and is contiguous. MMU maps this space to the noncontiguous physical space.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 386 / 407

Virtual memory: introduction

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 387 / 407

Virtual memory: introduction

Commonly stack placed at the top
addresses of logical space; grows
down.

Heap grows upwards.

Hole in the middle - no physical
memory used until pages are
requested by, for example, malloc or
dynamic linking.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 388 / 407

Virtual memory: introduction

Each process thinks that the shared memory is in their virtual address space, but the logical
addresses are mapped to the same shared pages in the physical memory.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 389 / 407

Demand paging: motivation

When loading a process, should we
bring all of its memory into the
physical memory?

A user may not need an entire large
program.

Instead, bring a page only when
needed

Similar to paging with swapping
(diagram on the right).

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 390 / 407

Demand paging: basic concepts

With demand pages, a process in
execution will have pages both in
memory and in the backing storage
(disk).

We need some way of distinguishing
them.

Valid-invalid bit marker can be used
here.

When a page is set to valid, OK.

When invalid, it may be out of
address space or it may not be in
memory.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 391 / 407

Demand paging: basic concepts

If a process makes access to a page
that is in the backing store, page
fault occurs.

We need to bring in that page into
memory and set its valid bit to 1.

Restart the memory instruction that
caused the error.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 392 / 407

Demand paging

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 393 / 407

Demand paging

Extreme case: start process without any pages in memory.

Let page faults occur and bring in only the required pages.

Pure demand paging - never bring in a page until it is addressed.

Demand paging main requirement

The ability to restart the instruction after the page fault. If a page fault occurs on instruction
fetch, we must refetch once the page has been loaded. If a page fault occurs when fetching an
operand, we must fetch and decode the instruction again and then fetch the operand.

Example

Consider instruction ADD A B C which contains three memory locations. The steps are: 1)
Fetch instruction, 2) Fetch A, 3) Fetch B, 4) Add A and B, 5) Store result in C. If page fault
occurs when writing C, we will need to get the page in and restart the five steps.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 394 / 407

Demand paging

On page faults, desired page has to be brought into memory.

It needs a frame in memory to fit the page in.

A list of free frames is usually maintained: free-frame list.

Zero-fill-on-demand is used to zero-out the previous data.

Free-frame list also is modified when the stack or heap segments of the process expand.

On system start up, available memory is placed on free-frame list.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 395 / 407

Demand paging: steps to take on page fault

1 Trap to the operating system
2 Save the user registers and process state
3 Determine that the interrupt was a page fault
4 Check that the page reference was legal and find the page on the disk
5 Issue a read from the disk to a free frame:

1 Wait in a queue for this device until the read request is serviced
2 Wait for the device seek and/or latency time
3 Begin the transfer of the page to a free frame

6 While waiting, allocate the CPU to some other user
7 Receive an interrupt from the disk I/O subsystem (I/O completed)
8 Save the registers and process state for the other user
9 Determine that the interrupt was from the disk
10 Correct the page table and other tables to show page is now in memory
11 Wait for the CPU to be allocated to this process again
12 Restore the user registers, process state, and new page table, and then resume the

interrupted instruction
M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 396 / 407

Copy-on-write

Remember that fork() creates a copy of the calling process.

Traditionally all pages have to be copied and assigned to a new process.

But usually forked processes run exec() immediately, loading a new executable.

A technique called copy-on-write avoids copying all pages on fork().

Instead, pages will be shared until the child process tries to write to one of them.

On write, a copy of the page will be made that is then written to by the child process.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 397 / 407

Copy-on-write

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 398 / 407

Copy-on-write

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 399 / 407

Part VI: Page Replacement

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 400 / 407

No free frames?

What should OS do if there are no free frames to copy a certain page to?

Terminate the process?

Use standard swapping to copy some other process out into memory and free up pages:
not used in modern OS because the whole process needs to be moved.

Most OS now combine swapping pages (instead of whole processes) with page
replacement.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 401 / 407

No free frames?

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 402 / 407

General page-replacement algorithm

1 Find required page on backing storage.
2 Get a free frame:

1 If there is one available, use it.
2 Apply page replacement algorithm to select victim frame.
3 Copy the victim frame to the backing storage.
4 Change page and frame tables to reflect the new state.

3 Move the original required page into the newly freed frame. Change page and frame
tables.

4 Continue running the process.

Costs

Notice that there is performance penalty because two disk operations are required to move out
one page and move in another page. Dirty bit is attached to each page to mark when it
differs from its copy in the backing store—if dirty bit is not set, we don’t need to copy it.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 403 / 407

General page-replacement algorithm

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 404 / 407

Page-replacement algorithms

Some common algorithms for picking the victim page:

First-In-First-Out (FIFO): pick the oldest page in memory (arrived earliest).

OPT: pick a page that will not be used for the longest period of time. Requires future
knowledge. Not used in practice, but useful when comparing algorithms.

Least recently used (LRU): look back in the past and pick a page that has not been
used the longest.

Page replacement

FIFO is the cheapest algorithm, but has an anomaly—increasing number of frames increases
page faults. In general, any improvements to demand paging will yield large benefits because
copying data from backing store take relatively long. Usually lowest page fault frame is a good
measure to judge the algorithm on.

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 405 / 407

Vevox quiz

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 406 / 407

COMP2211: Progress

Week Topic

1 Introduction to OS
2 OS services
3 Processes
4 Xv6: Live coding and Q&A from the xv6 book
5 Reading week. No scheduled labs or lectures
6 Threads and concurrency.
7 Scheduling
8 Process synchronisation
9 Memory management
10 Catch up
11 Module review

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 407 / 407

References I

A. Silberschatz, P. B. Galvin, and G. Gagne
Operating System Concepts. 10th edition
Wiley. 2018

A. Silberschatz, P. B. Galvin, and G. Gagne
Operating System Concepts. 10th edition. Accompanying slides
https://www.os-book.com/OS10/slide-dir/index.html

2020

R. Cox, F. Kaashoek, and R. Morris
xv6: a simple, Unix-like teaching operating system
https://pdos.csail.mit.edu/6.828/2024/xv6/book-riscv-rev4.pdf

Version of August 31, 2024

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 1 / 2

https://www.os-book.com/OS10/slide-dir/index.html
https://pdos.csail.mit.edu/6.828/2024/xv6/book-riscv-rev4.pdf

References II

R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau
Operating Systems: Three Easy Pieces. Version 1.0
https://pages.cs.wisc.edu/~remzi/OSTEP/

Arpaci-Dusseau Books. Aug., 2018

M. Mikaitis (Leeds) COMP2211 Operating Systems December 2024 2 / 2

https://pages.cs.wisc.edu/~remzi/OSTEP/

	Appendix

