fud

UNIVERSITY OF LEEDS

COMP2211 Operating Systems
Combined slides: Weeks 1-8

Mantas Mikaitis

School of Computing, University of Leeds, Leeds, UK

Semester 1, 2023/24

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 1/342

Objectives

To introduce the structure of COMP2211.
Talk about the coursework and exam.
Describe organisation of a computer system and interrupts.

Discuss the components in a modern multiprocessor system.

Introduce user mode and kernel mode.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 2/342

Part |: Introduction to the Module

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 3/342

Structure of COMP2211: Staff

o Martin Callaghan
e Mantas Mikaitis (me)

@ Tom Richardson

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 4/342

Structure of COMP2211: Lectures

Week

Topic

1 (current)

2

© 00 ~NO O~ W

10
11

Introduction to OS

OS services

Processes

Xv6: Live coding and Q&A from the xv6 book
Reading week. No scheduled labs or lectures
Threads and concurrency. Assignment due this week.
Scheduling

Process synchronisation

Memory management

File system

Module review

M. Mikaitis (Leeds)

COMP2211 Operating Systems November 2023

5 /342

Structure of COMP2211: Times and Places

@ Lectures Mon, Thu @2pm in Roger Stevens LT21.
@ Labs Mon 3-5pm; Thu 9-11am and 3-5pm in Bragg 2.05.

You will find one of the lab slots in your timetable.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

6/342

Structure of COMP2211: Reading List

We will be mainly using the Operating System Concepts (OSC) 10th ed., 2018, and the 3rd

edition of the xv6 book (XV6), 2022. These slides are based on OSC (see the reference list).

M. Mikaitis (Leeds)

Week

Reading materials

1 (current)

2

H = O 00 ~NO 1~ W

= O

Chapter 1 OSC. Chapter 1 XV6.
Chapter 2 OSC. Chapter 2 XV6.
Chapter 3 OSC.

Reread Chapters 1-2 XV6.

Reread Chapters 1-3 OSC.
Chapter 4 OSC.

Chapter 5 OSC.

Chapters 6—8 OSC.

Chapters 9-10 OSC. Chapter 3 XV6.
Chapters 13-15.

Reread Chapters 4-10, 13-15 OSC.

COMP2211 Operating Systems November 2023

7/342

Structure of COMP2211: Laboratories

Laboratories Wl“ be in C and BaSh COMP2211 2023/24 LABORATORY MANUAL

Download the lab manual from
Minerva.

@ Weeks 1-3 contain introduction to
xvb operating system.

@ Weeks 4-6 you will work on a 30%
assignment.

Weeks 7-11 contain further formative
assessment exercises.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 8 /342

Structure of COMP2211: Xv6 operating system

M. Mikaitis (Leeds)

XV6 is a small teaching operating

system from MIT.

The source code is readable and
editable.

It runs on RISC-V architectures.

To run it on Intel/AMD CPUs we

emulate RISC-V with gemu.

It is written in C (94.4%) with some

RISC-V assembly (3.4%).

eoce : <ma...

P21 — qemu-system-riscv6a « make qemu :
scsmmi@UOL-L-YXTPHQPNQV xvé-riscv % make gemu
gemu-system-riscvé4 —-machine virt -bios none -kernel
kernel/kernel -m 128M -smp 3 -nographic -global virti
o-mmio.force-legacy=false —-drive file=fs.img,if=none,
format=raw,id=x@ -device virtio-blk-device,drive=x@,b
us=virtio-mmio-bus.@

¥

xvé kernel is booting

hart 1 starting
hart 2 starting
init: starting sh
$

COMP2211 Operating Systems

November 2023

9/342

Structure of COMP2211: Xv6 operating system

. 11 1024
e 11 1024
README 2 2 2305
cat 2 3 38936
echo 2 4 37816
. . forktest 2 5 15896
@ We use it by entering commands, grep 2 6 w236
1|:|1t 2 7 38280
similarly as with the Unix machines in b 50 s
L. s 2 10 40872
the 2.05 lab, but more limited. mkdix 211 37792
) . sh 2 13 60360
@ The command line interpreter Seeriosts 3 16 1sei0s
. grind 2 16 53536
recognizes bash commands. " e 2 17 39856
. S}eep 2 19 37536
@ In the labs you will extend your copy Al vt
uptime 2 22 37536
of xv6 to have more commands. o L e
history 2 25 38816
mergesort 2 26 40840
hw 2 27 38000
test_malloc 2 28 49040
my_shell 2 29 42880
malloc_stress 2 30 55856
console 3310
$

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 10 /342

Structure of COMP2211: Programming languages

A
Lad

SECOND EDITION

e Mainly C. Pp—

@ A lot of character handling. f . :

@ Pointers and double pointers. i\\ y) G
@ Arrays of characters and strings. P

@ Dynamic memory allocation. PROGRAMMING
@ Xvb specific process creation and LLANGUAGE

command execution.

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

@

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 11/342

Structure of COMP2211: Top Hat

We will be using Top Hat in the lectures to test your understanding.

If you can, go to https://app.tophat.com/e/798592

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 12 /342

https://app.tophat.com/e/798592

Structure of COMP2211: Assessment

Deadline 2pm Nov. 7 (W6): 30% module mark

Task: write your own command line interpreter (Shell) for xv6 that can perform various
commands, such as 1s or cd, redirect standard output to files, and other advanced features.

@ The formative exercises on weeks 1-3 and reading of Chapters 1-2 of the xv6 book are
essential for this assignment.

@ The assignment will be automatically marked on Gradescope by running a set of
commands and checking whether the output from the submitted shell is as expected.

January paper-based 2-hour exam: 70% module mark

Reading lecture slides and OSC is essential to succeed. Engaging with laboratory material can
also help mastering the learning outcomes.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 13 /342

Structure of COMP2211: Communication and feedback

@ Please post questions on COMP2211 2023/24 Microsoft Teams structure.

o If you prefer anonymity, email me your questions and | will answer them on Teams and
not post your name.

@ Feedback: informal mid-module and formal end-of-module surveys.

Feedback welcome

Feel free to tell me feedback after lectures and labs and | will try to implement changes as we
go along. For example, tell me: present slower, explain a specific topic again or differently,
supply slides in different colour theme, ...

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 14 /342

Structure of COMP2211: Connection between labs and lectures?

@ Lectures cover general OS concepts.
o Laboratories focus on xv6, which has used some of those concepts.
@ Do not look for every concept from the lectures to be in xv6.

@ You will notice the theory being of use in your further studies, interviews, placements,
graduate roles, other modules, ...

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 15 /342

Structure of COMP2211: What is in the exam?

All topics addressed in the lectures can appear in the January exam. Material appearing in the
lectures is examinable based on the OSC contents of appropriate Chapters/Sections.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 16 /342

Structure of COMP2211: Quiz (5 minutes)

If you can, go to https://app.tophat.com/e/798592

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 17 /342

https://app.tophat.com/e/798592

Part |l: Introduction to Operating Systems

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 18 /342

Operating Systems: Main Definitions

A computer system can be divided into four components:
o Hardware
@ Operating system

@ Application programs

o

User

OS is a resource allocator

Hardware (CPU, memory, mouse, keyboard, ...) are resources. Multiple applications running
on the system compete for them. Operating System coordinates hardware use among users
and applications.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 19 /342

Operating Systems: Main Definitions

user

!

application programs
(compilers, web browsers, development kits, etc.)

! { !

operating system

{ { !

computer hardware
(CPU, memory, I/0 devices, etc.)

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 20 /342

Operating Systems: Main Definitions

User view:

Laptop or PC that consists of monitor, keyboard, mouse.
One user that wants to use all of the resources.

OS designed for ease of use rather than resource utilization.

Many users interact with mobile devices: touch screen, voice recognization.

Embedded systems

Some computers have little or no user view: home appliances, various devices in cars, and
other specialized computers that almost work on their own.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 21/342

Operating Systems: Main Definitions

System view:
@ Resource allocator, involved with hardware intimately.
@ Manages CPU time, memory space, storage space, /0O access.

@ Faces several requests—has to decide who gets the resources and who waits (users,
applications).

@ Responsible for overall efficient operation of the system.

Control program

Different view of OS. Managed the control of programs to prevent errors and improper use of
the hardware.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 22/342

Operating Systems: Main Definitions

Operating systems arose due to the growth of complexity of computer hardware.

Moore's Law correctly predicted in the 1960s that the number of transistors on an integrated
circuit would double every 18 months.

The size shrank and the functionality has grown—now the uses are very varied and OS is
essential to manage the complexity.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 23 /342

Operating Systems: Main Definitions

Moore’s Law: The number of transistors on microchips doubles every two Our World
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Transistor count
50,000,000,000

10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

100,000,000
50,000,000

50 Oor

o o

Sentium Il Coppermine

10,000,000 o "
5,000,000 P X il

1,000,000
500,000

100,000
50,000

10,000 16 00
5,000

2 &I SIS TN TN RN R
F MDD
S S
iki/Transistor couny Y€@T in which the microchip was first introduced
a to make progress against the world’s N Licensed under CC-BY b authors Hannah Ritchie and Max Roser

COMP2211 Operating Systems November 2023 24 /342

https://en.wikipedia.org/wiki/Moore's_law

Operating Systems: Main Definitions

A common definition of operating systems is that it is the one program that always runs, a

kernel. Alongside are system programs, associated with OS but not part of kernel, and
application programs.

Novadays OS includes many things outside the immediate definition of what the OS does:
browsers, photo viewers, word processors, ...

Operating System

o A kernel (always running).
o Middleware frameworks that allow development of applications.
@ System programs that aid in various OS tasks.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 25 /342

Structure of COMP2211: Discussion with peers (5 minutes)

Consider the main components of a computer system below, again. Discuss with your peers

how each of those would look in a washing machine system at home: User interaction?

Applications? OS? Hardware resources? Programming them?

user

!

application programs

(compilers, web browsers, development kits, etc.)

!

!

!

operating system

{

computer hardware
(CPU, memory, I/O devices, etc.)

M. Mikaitis (Leeds)

COMP2211 Operating Systems

November 2023

26 /342

Part [ll: Concept of Interrupts

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 27 /342

Computer-System Organization

mouse keyboard printer monitor

==y Yol
|

graphics

disk
controller adapter

‘ CPU ‘ ‘ USB controller ‘ ’

| | system bus | |

@ Many devices competing for memory access.

@ OS uses device drivers to talk to various controllers.

@ Memory has a memory controller which also does some managing to keep up with many
reads and writes at once.

We now go deeper into various concepts within this system.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 28 /342

Interrupts

Consider a series of events within the system when we press a key on a keyboard. This
constitutes input/output (1/0).
© Device driver writes to appropriate registers (memory locations) in the device controller.

@ The controller reads to see what needs to be done (e.g. read a character from the
keyboard).

© Controller starts transfer of data from the keyboard.
@ Controller informs the driver that a transfer has been done.

© Driver gives control to OS, to read the data.

How does the controller inform the driver (CPU) that it has finished an operation? Through
an interrupt.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 29 /342

Interrupts

@ Hardware may trigger interrupts at CPU at any time.

@ CPU then stops what it is doing and checks if it can service the interrupt, through the
interrupt service routine.

@ When serviced, CPU goes back to what it was doing.

CPU user program

I/O interrupt processing

10 idle
device

transferring

|5 |5 - = = =

5] 818 |8 5 S 3|3
< 2|3 |3 = g2 (3 (3
3 25 (g 2 g |5 |5
2 (2] = 2 M E
2 ERC-NE] é S lg |3
° 3 (2 > 3|2

g (8 g2

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 30/342

Interrupts

@ CPU may need to store the current program counter, for example into the link register
or stack—to get back to what it was doing before the interrupt.

@ The interrupt routine has to save any CPU state that it will be changing, and return it
back to what it was once finished.

@ Once done, the program counter and the original program execution continue.

Program Counter (PC) register

Stores the address of the next instruction that the CPU will execute.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 31/342

Interrupts

CPU

—s

device driver initiates 1/0

1/0 controller

CPU executing checks for

interrupts between instructions
'

i
i
¥

initiates 1/0

CPU receiving interrupt,
transfers control to
interrupt handler

s

input ready, output
complete, or error
generates interrupt signal

interrupt handler
processes data,
returns from interrupt

B

CPU resumes
processing of
interrupted task

M. Mikaitis (Leeds

COMP2211 Operating Systems

November 2023

32/342

Interrupts

Requirements for an effecting interrupt system:
o Capability to defer interrupts when something more important is being done on CPU.
o Efficient way to service interrupts—can’t take too long to respond.

@ Structure of high and low priority interrupts.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 33/342

Interrupts: Advanced Material

@ When interrupt occurs, correct interrupt service routine needs to be discovered.
@ There can be hundreds to search through, but we need to be fast.

@ Instead of searching, a table of pointers to interrupt service routines can be used:
interrupt vector.

@ A unique ID on interrupts is indexing this vector, which sends CPU straight to the correct
interrupt service routine.

Interrupt state save and restore

Assume that an interrupt service routine for keyboard input interrupt is using CPU registers
R1-R7 for internal operations. Before doing anything, R1 to R7 have to be stored in memory
(pushed to stack), and once the interrupt is finished, they should be restored. If this is not
done, the CPU will return to its previous state but will potentially crash because the carpet
was moved from under its feet—the registers suddenly changed!

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 34 /342

Interrupts: Advanced Material

In reality, the vectors get too big and a hybrid approach is used, interrupt chaining.

Interrupt routines point to the next interrupt routine: we loop through them until the
right one is found.

Nonmaskable interrupts: unrecoverable errors, such as memory read/write faults.

Maskable interrupts: CPU can turn these off before starting some critical code section.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 35/342

Interrupts: Intel processor event-vector table

vector number

description

o

C©®NOUODWN =

-

19-31
32-255

divide error

debug exception

null interrupt

breakpoint

INTO-detected overflow
bound range exception
invalid opcode

device not available
double fault

coprocessor segment overrun (reserved)
invalid task state segment
segment not present

stack fault

general protection

page fault

(Intel reserved, do not use)
floating-point error
alignment check

machine check

(Intel reserved, do not use)
maskable interrupts

M. Mikaitis (Leeds)

COMP2211 Operating Systems

November 2023

36 /342

Interrupts: Common Terms

Raise an interrupt: ask CPU to stop what it is doing and do something for me.
Catch an interrupt. CPU discovers someone wants processing time.
Dispatch the interrupt: call interrupt handler.

Clear the interrupt: call the correct interrupt service routine.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

37/342

Interrupts: Quiz (5 minutes)

If you can, go to https://app.tophat.com/e/798592

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 38/342

https://app.tophat.com/e/798592

Part I1V: Storage and Memory

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 39 /342

Storage Structure

CPU can only load instructions from memory.
Programs therefore must be loaded into memory to run.
Usually programs loaded to random-access memory (RAM).

e 6 o ¢

Computers use other memory as well. Since RAM is volatile (contents lost when power is
off) we cannot trust it to hold for example the bootstrap program, which runs on power
on.

@ Read-only EEPROM memory—slow and rarely changed memory that preserves contents
on power off.

@ Iphones for example use EEPROM to store serial numbers and other hardware
information.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 40 /342

Storage Structure: Reminder of Units

A bit is a basic unit of storage.

A byte is 8 bits.

A word is one or more bytes, varies between computer architectures. Register width and
instruction size usually constitutes how large is a word.

Kilobytes, megabytes, gigabytes, terabytes, petabytes, ...

Or in fact, correct International Organization for Standardization (ISO) binary prefixes
adopted in 2008 are:

Kibibytes, mebibytes, gibibytes, tebibytes, pebibytes, ...

024 10243 L o
M. Mikaitis (Leeds) COMP2211 Operating Systems

November 2023 41 /342

Storage Structure

@ Memory is laid out in arrays of bytes, which have addresses.

@ CPU interacts with memory by load and store instructions addressing specific bytes or
words.

@ Bytes or words are moved between the CPU registers and the memory.

@ Similarly, CPU loads instructions from memory automatically, addressed by the program
counter.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 42 /342

Storage Structure

You may have heard about von Neumann architecture.
Instruction-execution cycle: fetch instruction, execute, repeat.
First CPU fetches an instruction from a program in memory, to an instruction register.

Then it decodes the instruction and executes it in the hardware.

The result may be stored back in memory.

Ideally we would like the programs and data to be in fast RAM memory. This is not possible
due to volatility of the memory and relatively small size.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 43 /342

Storage Structure: Secondary storage

Data is stored in secondary storage, which preserves programs and data while the system is off.

e Hard-disk drives (HDD).
@ Nonvolatile memory (NVM) devices.

Other storage

CDs, cache, Blu-ray disks, magnetic tapes, ...

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 44 /342

Storage Structure: Hierarchy

storage capacity

access time

registers

A

| primary
storage

faster

| secondary
storage

optical disk

-

A
o
2
©
£
@
volatile
storage
nonvolatile
storage ‘
9] ‘
[
o
1=
K]
Y ’

magnetic tapes

)

tertiary
[storage

slower

\/

Operating Systems have to balance all of these storage types for the whole system to work

efficiently and reliably.

M. Mikaitis (Leeds)

COMP2211 Operating Systems

November 2023

45 /342

|/O Structure

Interrupt driven memory access is fine for small requests, but moving a lot of data will not
work very well.

Direct Memory Acces (DMA) is used to offload work from the CPU.

Device controller directly transfers data to and from the device and main memory, without
holding the CPU while doing so.

One interrupt is generated per transfer, to tell the device driver that the operation has
completed. Better than interrupt for every byte.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 46 /342

|/O Structure: Direct Memory Access

thread of execution

l«— instruction execution —»
cycle

ayoed

[«— data movement —>|

CPU (*N)
S 5
8 g
(]

M. Mikaitis (Leeds)

DMA

COMP2211 Operating Systems

instructions
and
data

memory

November 2023

47 /342

Part V: Single and Multi-processor Systems

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 48 /342

Single-Processor Systems

Single processor containing one CPU with a single processing core - many years ago.

The core is the main piece of hardware within a CPU that executed program instructions and
managed register storage locally.

General purpose or domain specific: can run general programs or can runs a limited set of
operations optimized for some task/s.

A computer system may have one general purpose single-processor CPU and multiple

domain-specific processors that accelerate some specific tasks. From the perspective of OS,
this system is still a single processor.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 49 /342

Multiprocessor Systems

Multiprocessor systems dominate the computer landscape novadays.
Two or more processors, each with a single-core CPU.

The main goal is to increase throughput—how much work can we do in a certain amount of
time.

Ideally N processors should result in N times speed up. In reality it is less: there is some

overhead in managing multiple processors that cooperate on some task. This overhead does
not exist when only one processor is executing.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 50 /342

Symmetric multiprocessing (SMP)

processor, processor,
CPUq CPU,
registers registers
[|
cache cache

main memory

M. Mikaitis (Leeds) COMP2211 Operating Systems

November 2023

51 /342

Multiprocessor Systems

The definition gets more complicated today: multicore systems.

processory

CPU coreg

registers

L1 cache

CPU core;

registers

L1 cache

it

L2 cache

main memory

M. Mikaitis (Leeds)

COMP2211 Operating Systems

November 2023

52 /342

Multiprocessor Systems: Main Terms

CPU — The hardware that executes instructions.
Processor—A physical chip that contains one or more CPUs.
Core — The basic computation unit of the CPU.

Multicore — Including multiple computing cores on the same CPU.

Multiprocessor — Including multiple processors.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 53 /342

Single/multiprocessing: Discussion with peers (5 minutes)

Find out how many processors and CPUs there are in your chosen personal device (laptop,
mobile phone).

Discuss with your peers and compare.

At the end volunteers welcome to tell us the details about their CPU.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 54 /342

Part VI: Key Concepts for Operating Systems

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 55 /342

Operating-System Operations

As noted earlier, bootstrap program is a key component that starts a computer:
@ Stored in nonvolatile memory.

@ Initializes CPU registers, device controllers, memory contents.

o Loads and starts executing the OS: locate the kernel and load into the main memory.

Once the kernel is loaded, it can start providing services to the system and its users.
System dameons also run “always”, alongside the kernel, and provide various system services.

Once the kernel and daemons are running, the OS is waiting for |/O device requests and other
tasks to do. It can sit quietly if nothing is happening.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 56 /342

Operating-System Operations

Back to interrupts:
e Hardware interrupts: we looked at these. 1/O interrupts and other devices.

o Trap interrupts: software-generated interrupt: for example, division by zero or invalid
memory address being accessed.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 57 /342

Multiprogramming

A single program cannot keep CPU or 1/O devices busy at all times—the ability to run
multiple programs and change between them is multi programming.

It increases CPU utilization by swapping which program in execution (a process) gets the
CPU time.

When one process stops executing and starts waiting for 1/0 to finish, CPU is allocated to
another process that is ready to run.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 58 /342

Multitasking

Similar to multiprogramming, but the switches between processes are very frequent to provide
users with a fast response time.

Processes

Having multiple running programs, processes, requires some form of memory management. We
also need a set of rules for deciding which process gets run (scheduling). Processes should
also not interfere with other processes. These issues will be addressed in later lectures.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 59 /342

Multiprogramming: Memory Layout

max
operating system
process 1
process 2
process 3
process 4
0

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 60 /342

User and Kernel Modes of Operation

Main idea

Incorrect or malicious program should not be able to break the OS, execute code that belongs
to OS services, or take over the hardware resources.

To avoid these problems, OS can execute code in user mode and in kernel mode (also
known as system/supervisor/privileged mode).

OS services and the kernel are executed in the system mode, while user programs are in user

mode. Once program requests some important resources, it can go into the kernel mode for
some specific tasks, system calls.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 61 /342

User and Kernel Modes of Operation

user process

At system boot time, the hardware starts in kernel mode.

Also, on interrupts, the hardware switches to kernel mode.

In general, whenever OS gains control, we are in kernel mode.

M. Mikaitis (Leeds)

COMP2211 Operating Systems

user mode
user process executing H calls system call ‘ | return from system call (mode bit = 1)
\ 7
AV V4
\ y4
kernel trap return
mode bit = 0 mode bit = 1
kernel mode
execute system call (mode bit = 0)

November 2023

62 /342

Timer: Periodic Interrupts from OS

For the OS to maintain control over the CPU we need protection against user program getting
stuck in infinite loop or similar.

Timer is set to interrupt the computer after a specified period.
Period can be fixed or variable.

OS sets up the timer before transferring control to user programs. When the timer interrupt
occurs OS gets control and can decide whether to abort the program or let it run longer.

Instructions that set up the timer are privileged instructions—hardware operations that can
only be executed in kernel mode.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 63 /342

Process Management

What is a process

A program is compiled and stored in the main memory, as a set of instructions. When the
CPU is going through those instructions and executing them one by one, the program takes a
form of a running process. Concept of processes is fundamental to OS resource management.

Example of processes: a compiler that is compiling some code; a word processor that has a
document open; a social media app open on a smartphone.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 64 /342

Process Management

Processes need resources: CPU, memory, |/0, files, initialization data.
A program is not a process—it's a passive entity.
Processes instead are active entities.

A single-threaded process has one program counter specifying the next instruction to
execute.

@ Sequential execution: CPU executes instructions one at a time, until the process
terminates.

@ Two processes can be associated to the same program, but are considered separate
entities, separate execution sequences.

o Multithreaded processes have multiple program counters—we will address threads
later in the module.

@ Typically many processes exist, some belong to OS executing in kernel mode, some to
user, executing in user mode: OS multiplexes between these processes on single or
multicore CPUs.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 65 /342

Process Management

OS understakes following activities in relation to processes:
@ Creating and deleting processes.
@ Scheduling processes and threads on the CPUs.
@ Suspending or resuming processes.
@ Provide process synchronization—we address this later in the module.

@ Provide ways for process communication—also later in the module.

We will get back to processes in Week 3.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 66 /342

Memory Management

@ Main memory is central to the operation of a modern computer system.

@ Main memory can be very large, holding thousands to billions of bytes, each addressed
separately.

e CPU and 1/0O devices can target those bytes (read/write).

@ Apart from registers and caches, main memory is the only other memory directly
accessible by the CPU.

@ For CPU to access other data, such as in various disks, it has to be transferred to the
RAM first.

@ Data and instructions therefore first travel to the RAM.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 67 /342

Memory Management: Program Execution

@ Load a program into the main memory and let CPU know the start address.
@ As program executes, instructions and data are accessed by addressing the main memory.

© When a program terminates, space is freed and a new program may take its place in the
main memory.

@ Several programs are usually in memory, which creates a need for memory management.

OS memory management

Keep track of used memory blocks and which process is using them. Allocate/deallocate
memory space. Decide which processes to move in and out of memory. We will get back to
this in Week 9.

You can notice the complexity of work of OS is growing. ‘

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 68 /342

Cache Management

Caching is a technique used to speed-up access to commonly read/written information—the
core idea is to copy blocks of information from slower to faster memory and then access it
from that faster memory. This state is temporary and caching is happening very frequently at
all levels: hardware, OS, software.

When we need a particular piece of data, we first check the cache. If found, we don't go to
slower memory. Otherwise we copy the data from the RAM to the cache—assume it will be
needed again soon.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 69 /342

Cache Management

Level 1 2 3 4 5
Name registers cache main memory solid-state disk | magnetic disk
Typical size <1KB <16MB < 64GB <1TB <10TB
Implementation custom memory | on-chip or CMOS SRAM flash memory magnetic disk
technology with multiple off-chip

ports CMOS CMOS SRAM
Access time (ns) 0.25-0.5 0.5-25 80-250 25,000-50,000 5,000,000
Bandwidth (MB/sec) |20,000-100,000 |5,000-10,000 | 1,000-5,000 500 20-150
Managed by compiler hardware operating system | operating system |operating system
Backed by cache main memory | disk disk disk or tape

Cache is smaller than main memory. Cache replacement policy is an important
consideration in OS and can increase performance significantly: what should we keep in cache
and what should we move to memory?

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 70 /342

Cache Coherence

Cache coherence

In multiprocessor environment, each processor may have a separate cache. If both contain the
same memory copied from the RAM, and one of them updates it, what happens to the other?
Cache coherency is needed to make sure the data is not outdated in one of the copies. In
distributed systems problem severe: same data in different computers.

processory

CPU core, CPU corey

registers registers

L1 cache L1 cache

L2 cache

main memory

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 71/342

Security and Protection

@ OS protects hardware and memory resources from what can be considered unauthorized
access by processes and users.

@ Protection: mechanism for controlling access to certain resources defined by the
computer system.

@ Security: defense of the system against internal and external attacks: denial-of-service,
worms, viruses, identity theft, theft of service, ...

Operating System Security Measures

Keep track of user IDs; each user IDs has associated resources that they can access; group 1D
allow set of users to be assigned permissions.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 72 /342

Virtualization

Run another OS within the main OS, run applications on that guest OS.

Emulation: guest OS compiled for a different hardware which has to be emulated to run on
the hardware we have on our desk.

Virtualization: guest OS compiled for our hardware, and run natively, using that our CPUs
instruction set. This is faster than emulation, but limited.

In the labs we are emulating RISC-V architecture and running xv6 by translating RISC-V
instructions that xv6 uses to Intel/AMD instructions which the lab computers understand.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 73/342

Virtualization

processes

I

kernel

hardware

(a)

e

programming/
interface

processes

processes

processes
kernel kernel kernel
VM1 VM2 VM3
virtual machine
manager
hardware
(b)

COMP2211 Operating Systems

November 2023

74 /342

Kernel Data Structures

We finish this week with a look (a reminder?) of the various data structures that are used in
the kernel to store and manage data.

Singly linked list:

data data data null
I I I R AR . |

| t | |

Doubly linked list:

' [| I ! I
data null data data data null
| | | | | | | | | | | P |_|_|_|

L 1 L1 (S O A |

COMP2211 Operating Systems

November 2023 75 /342

Kernel Data Structures

Circularly linked list:

! |
I data | I I data | I I data | I ' . ‘ data
| o I Lt

‘ Lists of size n require at most n checks to find an item. ‘

A stack is a common data structure in OS: last-in first-out (LIFO) structure which pushes
things at the top and pops them from the top of the list. Interrupt routines push registers and
pop them back to restore the previous state of the CPU.

Queue similarly uses first-in first-out idea (FIFO).

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 76 /342

Kernel Data Structures

Trees introduce hierarchy: parent-child structure between data points.

17

Tree search complexity

Unbalanced tree of n nodes can require up to n comparisons to find the data. Balanced tree
can improve this by requiring log(n) (height of left and right subtrees differ by at most 1).

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 77 /342

Kernel Data Structures

Hash maps can allow a search cost of at most 1.

hash_function(key)

LT T | [heshme

value

Ideally, each unique key is mapped to unique value, which can be used as an index to a table
containing data we want.

Hash collisions can occur: different keys map to the same value.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 78 /342

COMP2211: Progress

Week Topic

1 tntroduction-to-0S

2 OS services

3 Processes

4 Xv6: Live coding and Q&A from the xv6 book

5 Reading week. No scheduled labs or lectures
6 Threads and concurrency. Assignment due this week.
7 Scheduling

8 Process synchronisation

9 Memory management

10 File system

11 Module review

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 79 /342

fud

UNIVERSITY OF LEEDS

COMP2211 Operating Systems
Combined slides: Weeks 1-8

Mantas Mikaitis

School of Computing, University of Leeds, Leeds, UK

Semester 1, 2023/24

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 80 /342

Progress

Week Topic

1 Introduction to OS

2 (current) OS services

3 Processes

4 Xv6: Live coding and Q&A from the xv6 book

5 Reading week. No scheduled labs or lectures
6 Threads and concurrency. Assignment due this week.
7 Scheduling

8 Process synchronisation

9 Memory management

10 File system

11 Module review

M. Mikaitis (Leeds)

COMP2211 Operating Systems November 2023

81/342

Reading List

We will be mainly using the Operating System Concepts (OSC) 10th ed., 2018, and the 3rd
edition of the xv6 book (XV6), 2022. These slides are based on OSC (see the reference list).

M. Mikaitis (Leeds)

Week Reading materials

1 Chapter 1 OSC. Chapter 1 XV6.

2 (current) Chapter 2 OSC. Chapter 2 XV6.

3 Chapter 3 OSC.

4 Reread Chapters 1-2 XV6.

5 Reread Chapters 1-3 OSC.

6 Chapter 4 OSC.

7 Chapter 5 OSC.

8 Chapters 6—8 OSC.

9 Chapters 9-10 OSC. Chapter 3 XV6.
10 Chapters 13-15.

11 Reread Chapters 4-10, 13-15 OSC.

COMP2211 Operating Systems November 2023

82342

Objectives

Identify services that OS provides.

Discuss system calls.

Compare monolithic, layered, microkernel, modular and hybrid approach to OS design.
Talk about booting OS.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 83 /342

Part |: Description of the Problem

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 84 /342

Operating-System Services

user and other system programs

GUI touch screen

command line

user interfaces

system calls
program /0 file I resource .
i : communication i accounting
execution operations systems allocation
protection
error and
detection .
a security
services

operating system

hardware

M. Mikaitis (Leeds)

COMP2211 Operating Systems

November 2023

85 /342

Operating-System Services

Set of features helpful most directly to the user:

User interface (Ul): graphical, touch-screen, command-line interface, ...
Program execution: load programs from memory and run them; end execution.

1/0 operations: access data from files or 1/O devices. For efficiency and protection,
users cannot do so directly: OS services do that for us.

File-system manipulation: read, write, create, delete, search files. Access permission
control.

Communications: Communicate between processes. Shared memory or message
passing communication.

Error detection: Errors occur in CPU, memory, 1/0 devices, user programs: OS has to
detect, correct, report errors. Sometimes may decide to halt the system.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 86 /342

Operating-System Services

Other features are mainly for the operation of the system:

@ Resource allocation: Multiple processes are running on the system and they should be
allocated resources: CPU cycles, main memory, file storage, 1/O device access.

o Logging: Keep track of which programs what resources.

o Protection and security: Protect information between different users on the system.
Make sure processes do not interfere. Control resource access. Security from outside:
control access to the system.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 87 /342

User and OS Interface: Command Interpreters

Command Interpreters

On UNIX and Linux systems multiple options: C shell, Bourne-Again shell, Korn shell. The
main function is to execute user supplied commands, which usually modify files on the system.

The commands can be built into the shell or they can be a separately stored executable which
the shell can invoke. The latter requires no modification to the shell when adding new
commands.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 88 /342

User and OS Interface: Command Interpreters

[] L] 1 images — -zsh — 65x15
scsmmi@feng-linux-07:~/Work/comp2211 — -zsh | eaching/2023:24/COMP2211, W zsh R
/dev/disk1s2 500Mi 6.OMi 481Mi 2% 1 4925040
0% /System/Volumes/xarts
/dev/diskls1 500Mi 6.2Mi 481Mi 2% 32 4925040
0% /System/Volumes/iSCPreboot
/dev/disk1s3 500Mi 2.1Mi 481Mi 1% 52 4925040

0% /System/Volumes/Hardware
/dev/disk3s5 46061 117Gi 318Gi 27% 2333739 3339354600
0% /System/Volumes/Data

map auto_home oBi 0Bi OBi 100% 2] 0 10
0% /System/Volumes/Data/home

/dev/disk2s1l 5.06i 1.561 3.5Gi 31% 58 36391520

0% /System/Volumes/Update/SFR/mntl

/dev/disk3sl 46061 8.9G1 318Gi 3% 356052 3339354600

0% /System/Volumes/Update/mntl
scsmmi@PUOL-L-YXTPHQPNQV images %

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 89 /342

User and OS Interface: Graphical User Interface

Instead of entering commands directly, we could use a Graphical User Interface—a
mouse-based window-and-menu interface.

Users move mouse and click on images that represent files, executables, directories, to interact
with them.

First GUI appeared in 1973.
Apple made GUI (desktop) widespread in the 1980s.

On UNIX systems traditionally command line dominated, but open-source GUIs exist: KDE,
GNOME, ...

Touchscreen is a form of GUI common on mobile devices.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 90 /342

User and OS Interface: When is Command Line Interface better?

@ Command-line is usually faster, but requires specialized knowledge.

@ System administrators for example would choose command line over a GUI for most
tasks.

@ Not everything is available in GUl—specialized commands only accessing through CLI.

e Easier to do repetitive tasks—commands can be recorded in a file and easily rerun (shell
scripts).

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 91 /342

Question

If you can, go to https://app.tophat.com/e/798592

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 92 /342

https://app.tophat.com/e/798592

Part |I: System Calls

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 93 /342

System Calls

System calls: a well-defined interface to the services of an operating system, used by
programmers and users.

Usually written in C or C++, but assembly also used.

Consider an example task of reading a file and writing its contents to another file. As a UNIX
command it may look like this:

cp in.txt out.txt

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 94 /342

System Calls: an Example

‘cp in.txt out.txt

In this simple task, many OS services are employed:

Entering the command, or moving a mouse to select files, causes sequence of 1/O system
calls.

Then, files need to be opened: another set of system calls.

Errors need to be detected: input file not existent, output file already exists with the
same name.

Can ask user if they want to replace the output file—requires set of system calls.

When both files are open, we loop by reading bytes from one to another (system calls).
Each read must return possible error conditions: end-of-file, hardware failure to read, ...

Once done, files should be closed (system calls).

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 95 /342

System Calls: an Example

source file |

| destination file

M. Mikaitis (Leeds)

A

e Example System Call Sequence

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

/

COMP2211 Operating Systems

November 2023

96 /342

Application Programming Interface (API)

Most programmers will not see this level of complexity of numerous OS services being in use.

APIs hide this away behind a set of standard functions which are made available to
programmers, for performing common tasks when developing applications.

Input and output parameters are specified for each API function.

Common APls:
@ Windows API.
e POSIX API (UNIX, Linux, macOS).
e Java API (Applications based on the Java Virtual Machine).

‘AP|S provide code portability and eases the task of using OS services.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 97 /342

Application Programming Interface (API)

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read () function that is avail-
able in UNIX and Linux systems. The API for this function is obtained from
the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count)
|

return function parameters

value name

A program that uses the read () function must include the unistd.hheader
file, as this file defines the ssize_t and size_t data types (among other
things). The parameters passed to read () are as follows:

int fd—the file descriptor to be read

void *buf—a buffer into which the data will be read

size_t count—the maximum number of bytes to be read into the
buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

M. Mikaitis (Leeds COMP2211 Operating Systems November 2023 98 /342

Application Programming Interface (API)

open()
user

mode
4{ system call interface }7
kernel

mode

open()

Implementation
of open()
system call

return

System call interface

This is an abstraction that allows programmer not to think about the details of system calls
being used in API functions. Only need to obey the API and understand the effects of calling
it.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 99 /342

System Calls: Parameter Passing

System calls require various information, for example, files, devices, addresses in memory,
lengths of byte streams, ...

Three methods to pass parameters to OS:
@ Through registers.
@ Store in a table and the address to it is passed through a register.

@ Pushed to a stack by a program and popped off the stack by OS.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 100/ 342

System Calls: Parameter Passing

register
X: parameters
for call
*| use parameters code for
load address X S system
system call 13 > call 13

user program

operating system

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 101 /342

System Calls: Types

We can roughly group system calls into six categories:
© Process control
© File management
© Device management
@ Information maintenance
© Communications
@ Protection

Next we discuss each of these categories.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 102 /342

System Calls: Process Control

Running program needs to halt execution.

If the termination is abnormal, some log files are usually generated.
Debugger may use those logs to aid programmer in fixing problems.

Bugs are usually discovered this way in the code.

When a process is running, it may want to load and execute other programs.
Create, terminate, duplicate, wait for processes.

Get information about a process.

Where data is shared among processes, locking is provided to assure no clashes.

We will go into detail in Weeks 3 and 8.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 103 /342

System Calls: File Management

Common system calls that deal with files:
o Create and delete files.
@ Open files for reading and writing.
@ Similar operations are required for directories.
°

Determine and set attributes: file name, type, protection codes, ...

Week 10 will get us to look at file systems.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 104 / 342

System Calls: Device Management

Processes may need resources to execute: main memory (RAM), disk drives, access to files, ...
Resources available can be granted, but usually processes will have to wait for them.
We can think of resources as devices: physical or virtual.

OS provides systems calls for interacting with these:

Request and release a device.

°
@ Similar to open and close system calls for files.

@ Once we have the device allocated to us, we can read and write.
°

File handling and general devices handling is so similar that UNIX merge the two.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 105/ 342

System Calls: Information Maintenance

There are system calls for transferring information between OS and user programs:
@ Time and date calls.
@ Version of OS.
@ Amount of free memory or disk space.
@ Memory dump also goes into this category.
@ Other debugging info usually provided: single step, runtime profiling, program counter
recording, various information about processes.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 106 / 342

System Calls: Communication

Processes need to communicate, and there are two main methods: message-passing model
and shared-memory model.

Message-Passing Process Communication Model

Processes exchange messages with one another to transfer information. Before communication
takes places, connection must be opened. Computer host name and process name are used
to identify the possibly remote parties for communication. System calls to establish or abort
communication are available. Other system calls to receive and send messages are also
available.

Shared-memory Model

Processes use system calls to create and gain access to regions of memory owned by other
processes. Normally, OS prevents process from accessing memory allocated to other processes.
In shared-memory model processes have to agree to remove this obstruction.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 107 / 342

System Calls: Protection

OS should provide services for protecting computer system resources.

Traditionally this was to protect one user from another on an instance of some OS.

With Internet all systems started to get concerned about protection.
System calls include setting permission on files and disks.

User allow/deny access systems calls.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

108 / 342

System Calls: Example System Calls on Windows and UNIX

EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS

The following illustrates various equivalent system calls for Windows and
UNIX operating systems.

Process
control

File
management

Device
management

Information
maintenance

Communications

Protection

M. Mikaitis (Leeds

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject ()

CreateFile()
ReadFile()
WriteFile ()
CloseHandle ()

SetConsoleMode ()
ReadConsole ()
WriteConsole ()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe ()
CreateFileMapping()
MapViewOfFile ()

SetFileSecurity ()

InitlializeSecurityDescriptor ()
SetSecurityDescriptorGroup()

COMP2211 Operating Systems

Unix

fork ()
exit()
wait()

open()
read ()
write()
close()

ioctl()
read ()
write()

getpid)
alarm()
sleep()

pipe()
shm_open ()
mmap ()

chmod ()

umask ()
chown()

November 2023

109 /342

System Calls: Example System Calls on Windows and UNIX

THE STANDARD C LIBRARY

The standard C library provides a portion of the system-call interface for
many versions of UNIX and Linux. As an example, let’s assume a C pro-
gram invokes the printf () statement. The C library intercepts this call and
invokes the necessary system call (or calls) in the operating system—in this
instance, the write () system call. The C library takes the value returned by
write() and passes it back to the user program:

#include <stdio.h>
int main()
{

printf (‘Greetings");

return 0;

user

mode
standard C library
kernel

mode
Qritel)

write()
system call

M. Mikaitis (Leeds COMP2211 Operating Systems November 2023 110/ 342

System Services

OS System Services

This is separate from system calls within the OS. System services are sitting between the
OS and the Application Programs. Also called system utilities.

user

!

application programs

(compilers, web browsers, development kits, etc.)

!

!

!

operating system

!

computer hardware
(CPU, memory, I/0 devices, etc.)

M. Mikaitis (Leeds)

COMP2211 Operating Systems

November 2023

111 /342

System Services

Some system services are interfaces to system calls, but some are more complex.

Examples:
o File management: create, delete, copy, rename, print, list files/directories.

@ Status information. Can be simple: time, date, memory space, users. Could be more
complex things about performance or debugging.

o File modification: text editors, text searching utilities, text transformation.
@ Programming language support: compilers, assemblers, debuggers. interpreters.
@ Program loading and execution.

Application programs supplied with OS are usually higher level tools that utilize many
system services: browsers, word processors and text formatters, spreadsheets.

Most users view OS through application programs and system services, not system calls.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 112 /342

Quiz (3 min)

If you can, go to https://app.tophat.com/e/798592

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 113 /342

https://app.tophat.com/e/798592

Part |ll: Code Compilation and Loading

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 114 /342

Linkers and Loaders

Usually a program resides on a disk as a binary executable file. To run it, the executable has
to be copied to memory and placed in the context of some process.

@ Relocatable object file: source code compiled into object files suitable to be moved into
a particular memory location.

The linker combines these objects into a binary executable.
Linker may include standard libraries, such as math.h in C.

A loader loads the executable into memory to be run on CPU.

Relocation assigns final addresses to various parts of the executable after it is placed in
memory.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 115 /342

Linkers and Loaders

source
program

i generates

object main.o

linker gcc -o main main.o -1m

.4_%

l generates

main

./main

dynamically
linked

program
in memory

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 116 /342

Linkers and Loaders

o Consider running ./main on command line.

@ The shell first creates a new process using the fork () system call.

@ The shell then invokes the loader with exec() passing it the name of the executable:
main.

@ The loader loads the program into main memory using the address space of the new
process.

@ Similar process occurs in GUI by double clicking the executable with the mouse.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 117 /342

Linkers and Loaders: Dynamic Linking

In the above we assume that libraries are linked into the executable and then loaded into
memory together with the rest of the program code—even if the code will end up not calling
those libraries.

Dynamic Linking

Link libraries dynamically when the program is being loaded into memory. Avoid linking and
loading libraries that will end up not being used in the program. Instead the library is loaded
when, and if, it is required during run time. Possible memory space improvements.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 118 /342

Linkers and Loaders: ELF format

Object files and executables typically have a standard format. It holds machine code and

various metadata about functions and variables in the program. Unix and Linux use the ELF
format.

ELF FORMAT

Linux provides various commands to identify and evaluate ELF files. For
example, the file command determines a file type. If main. o is an object
file, and main is an executable file, the command

file main.o
will report that main . o is an ELF relocatable file, while the command

file main

will report that main is an ELF executable. ELF files are divided into a number
of sections and can be evaluated using the readelf command.

One data point of interest is an entry point—address of the instruction to execute upon the
start of the program.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 119 /342

Why Applications are OS Specific

@ Applications compiled for one system (OS-hardware combination) usually will not work on
a different system.

@ Each OS has unique system calls.
@ Possible solutions:

@ Use interpreted languages like Python, Ruby: interpreter on each system goes through the
source code and executes correct instructions and system calls. Interpreter can be limited.

@ Use language like Java that runs on Java Virtual Machine (JVM): virtual machine is ported
to different systems and programmers use the universal interface of the JVM rather than the
specific OS.

© Compile code (such as C) for every different configuration.

In general this is still a difficult problem and there is no ultimate solution. Porting is required.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 120/ 342

Part IV: Design and Structure of Operating Systems

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 121 /342

OS Design and Implementation

Design of an operating system is a major undertaking and there is no complete solution that
could generate an OS automatically given requirements.

Internal structure can vary widely, based on the purpose of OS.
User goals and system goals first are outlined.
User: OS easy to learn and use, reliable, fast, safe.

System: easy to design, implement, maintain; efficient, reliable, error free.

There can be many interpretations of these vague requirements

General principles are known (we are learning them in this module), but designing one is a
creative task that relies on many human decisions and software engineering.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 122 /342

OS Design and Implementation: Policy and Mechanism

Separation of policies (what) and mechanisms (how) is an important concept.

@ Example policy: interrupt OS regularly; Mechanism: timer interrupts.

@ Good approach as we can change policies later and mechanisms are in place: for example,
change the timer interrupt frequency.

Linux example

The standard Linux kernel has a specific CPU scheduler—but we can change it to support a
difference policy in how we schedule different jobs on the system.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 123 /342

OS Design and Implementation: Languages

OS is a collection of many programs, implemented by many people over years—general
statements hard to make but there are some common points.

Kernel: assembly, C.

Higher level routines: C, C++, other.

For example, Android is mostly C and some assembly.
Android system libraries C or C++.

Android APls: Java.

Advantages of High Level Languages

Code written faster, more compact, easier to understand and maintain. Compiler
improvements easy to integrate by recompiling the OS. Easier to port the whole OS to new
architectures.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 124 /342

Quiz (3 min)

If you can, go to https://app.tophat.com/e/798592

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 125 /342

https://app.tophat.com/e/798592

OS Structure

Monolithic kernel: Place all the functions of the kernel into a single, static binary file that
runs a single address space. Not much structure or no structure at all.

Original UNIX system used this approach: it had a kernel and the system programs. It has
evolved over the years with some structure.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 126 /342

OS Structure

(the users)

shells and commands
compilers and interpreters
system libraries

kernel

M. Mikaitis (Leeds)

handling

signals terminal

swapping block 1/0O
character 1/0 system
terminal drivers

system-call interface to the kernel

file system CPU scheduling

page replacement
demand paging
virtual memory

system
disk and tape drivers

kernel interface to the hardware

terminals

terminal controllers

device controllers

memory controllers
disks and tapes

physical memory

COMP2211 Operating Systems November 2023

127 / 342

OS Structure

Monolithic kernels are simple in concept, but are difficult to implement and extend as
everything is in one big kernel rather than structured.

They have performance advantage, which explain why they are still relevant.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 128 /342

OS Structure

M. Mikaitis (Leeds)

applications

glibc standard c library

system-call interface

file CPU
systems scheduler
networks memory
(TCP/IP) manager
block character
devices devices

device drivers

COMP2211 Operating Systems

November 2023

129 /342

OS Structure

Monolithic kernels are said to be tightly coupled because changes in the system can affect all
other parts.

We can instead take a loosely coupled approach where the kernel is structured into parts
doing specific and limited functions.

Layered system: highest layer is user interface, while lowest layer is hardware. Layers can
only call functions from the layer below.

Debugging is easier in this—debug first layer without affecting the rest of the system, once
done, move up the layer.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 130/ 342

OS Structure: Layered approach

layer N
user interface

layer 0
hardware

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 131/342

OS Structure

Kernels can be modularized using the microkernel approach.

Remove all nonessential components from the kernel and implement them as user level
programs—this results in a small kernel.

When the operating system needs to be extended, new services are added in user space rather
than modifying the kernel. Kernel modifications require fewer changes since it is small.

It is also easier to port to another OS and provides more security since most services run in
user mode.

Performance suffers compared to one big kernel—different parts have to communicate.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 132/342

OS Structure: Microkernel

application
program

”n

file
system

device
driver

messages

interprocess
communication

messages

memory
managment

microkernel

CPU
scheduling

hardware

M. Mikaitis (Leeds)

COMP2211 Operating Systems

user
mode

kernel
mode

November 2023

133 /342

Booting an OS

It can be interesting to understand the steps needed in the OS boot:

@ Small piece of code, bootstrap program or boot loader locates the kernel. Boot loader
is stored in nonvolatile memory.

@ The kernel is loaded into the main memory and started.
@ The kernel initializes hardware.

@ The root file system is mounted.

In modern systems BIOS is replaced by Unified Extensible Firmware Interface (UEFI). It is
faster and supports 64-bit systems.

BIOS/UEFI can performs various other tasks: diagnostics to determine the state of the
memory and the CPU. It also discovers devices. If diagnostics pass, it continues with the
booting process.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 134 /342

Quiz (2 min)

If you can, go to https://app.tophat.com/e/798592

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 135 /342

https://app.tophat.com/e/798592

COMP2211: Progress

Week Topic

1 tntroduction-to-0S

2 OS5-services

3 Processes

4 Xv6: Live coding and Q&A from the xv6 book

5 Reading week. No scheduled labs or lectures
6 Threads and concurrency. Assignment due this week.
7 Scheduling

8 Process synchronisation

9 Memory management

10 File system

11 Module review

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 136 /342

fud

UNIVERSITY OF LEEDS

COMP2211 Operating Systems
Combined slides: Weeks 1-8

Mantas Mikaitis

School of Computing, University of Leeds, Leeds, UK

Semester 1, 2023/24

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 137 /342

Progress

Week Topic

1 Introduction to OS

2 OS services

3 (current) Processes

4 Xv6: Live coding and Q&A from the xv6 book

5 Reading week. No scheduled labs or lectures
6 Threads and concurrency. Assignment due this week.
7 Scheduling

8 Process synchronisation

9 Memory management

10 File system

11 Module review

M. Mikaitis (Leeds)

COMP2211 Operating Systems November 2023

138 /342

Reading List

We will be mainly using the Operating System Concepts (OSC) 10th ed., 2018, and the 3rd
edition of the xv6 book (XV6), 2022. These slides are based on OSC (see the reference list).

M. Mikaitis (Leeds)

Week Reading materials

1 Chapter 1 OSC. Chapter 1 XV6.

2 Chapter 2 OSC. Chapter 2 XV6.

3 (current) Chapter 3 OSC.

4 Reread Chapters 1-2 XV6.

5 Reread Chapters 1-3 OSC.

6 Chapter 4 OSC.

7 Chapter 5 OSC.

8 Chapters 6—8 OSC.

9 Chapters 9-10 OSC. Chapter 3 XV6.
10 Chapters 13-15.

11 Reread Chapters 4-10, 13-15 OSC.

COMP2211 Operating Systems November 2023

139 /342

Objectives

Study the concept of processes.
OS representation and scheduling of processes.

Creation and termination of processes.

Study the methods for interprocess communication.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 140/ 342

Part |: Introduction to Processes

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 141 /342

What is a Process?

Early computers: only one program executed at a time.
One program had complete control over resources.
Today: multiple programs in memory, all executed through multitasking.

This evolution required compartmentalization of various programs.

Process is a program in execution. One program invoked multiple times results in multiple
processes.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 142 /342

A Concept of Processes

o Early computers were batch systems: execute jobs submitted by users. Minimum
interaction.

@ This was followed by time-shared systems: user programs or tasks. Potentially
interacting.

@ Even one user can run several tasks: browser, email, editor.

Calling running programs jobs has historical significance, as most of the OS concepts were
developed around job processing. You may see the term used to this day, but process is a
modern replacement

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 143 /342

A Concept of Processes

The status of the current activity of some process is represented by
@ Current value of the program counter: where are we in the execution of the binary?

@ Contents of the CPU registers: what data are we working on?

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 144 / 342

A Concept of Processes: Memory Layout

Each process has its own memory layout: max
o Text section: executable code. stack
e Data: global variables. l

o Heap section: Memory that grows
and shrinks dynamically during
execution.

@ Stack: Structure for temporary

values (function parameters, return heap
addresses, and local variables).

data

Text and data sections are fixed size. text

Heap and stack change size. 0

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 145 /342

A Concept of Processes: Stack

Stack contains potentially a small amount of data which is pushed and popped using specific
CPU instructions.

For example, when a function is called, input arguments, local variables, and the return
address are pushed onto the stack.

Upon completing the function, data is popped from the stack: the last one is usually the
return address to get back to caller.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 146 / 342

A Concept of Processes: xv6 stack

MAXVA

PAGESIZE ¢

trampoline

trapframe

unused

heap

stack

guard page

data

Page aligned

unused

text

M. Mikaitis (Leeds)

RX--.
R-W-

RWU.

R-WU.

R-XU

argument 0

argument N

0

address of argument N

address of argument 0

nul-terminated string
argv[argc]

argv[0]

address of address of
argument 0

argc

OXFFFFFFF

(empty)

COMP2211 Operating Systems

argv argument of main

argc argument of main
return PC for main

November 2023

147 / 342

A Concept of Processes: Heap

MAXVA

trampoline
trapframe
@ The heap can be grown dynamically.
@ In Cmalloc and free do that for us. heap
@ Usually heap and stack grow toward
each other—overlap watched by OS.
@ On the right is the xv6 process
memory, which is slightly different. user stack
user text
and data
0 —>

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 148 /342

A Concept of Processes: Memory Layout Example

#include <stdio.h>

high #include <stdlib.h>
argc, agrv
memory
stack
l ,] ,_I
int main(int argc, char *argv[])
L — — I — — I:int *values;
heap int 1i;
—
uninitialized [‘ ‘ |
data values = (int *)malloc (sizeof (int) *5) ;
initialized for(i = 0; 1 < 5; i++)
data values[i] = 1i;
low text return 0;
memory }

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 149 /342

Quiz (5 minutes)

If you can, go to https://app.tophat.com/e/798592

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 150/ 342

https://app.tophat.com/e/798592

Part |l: Scheduling of Processes

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 151 /342

Process State Transitions

‘ Processes change states during execution. ‘

admitted

interrupt exit terminated

@ New: Process has been created.

@ Running: CPU is reading process’
instructions.

e Waiting: Waiting for an event (for
example, 1/O completion).

scheduler dispatch

1/0 or event completion I/O or event wait

o Ready
e Terminated

Note that only one process can be running on a core. Others may be ready or waiting.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 152 /342

Process Control Block (PCB)

‘OS keeps track of processes using a process control block (PCB). ‘

@ Process state

process state

e Program counter (PC) process number

o CPU registers: along with the PC, these have to be saved when program counter
process is interrupted.

. . . Lo . registers
@ CPU-scheduling information: priority and other scheduling

parameters. memory limits
list of open files

e Memory-management information: location of various
memories assigned to the process (Week 9). oo

@ Accounting information: resource utilization statistics.

e 1/0 status information: 1/O devices allocated to the process,
open files, ...

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 153 /342

R

Process Control Block (PCB): Linux Example

2 W

struct task_struct
process information

struct task_struct
process information

long state; /* state of the process */
struct sched_entity se; /* scheduling information */
struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /#* list of open files */

struct mm_struct *mm;

M. Mikaitis (Leeds)

"

f

current

struct task_struct
process information

L A

(currently executing proccess)

/* address space */

COMP2211 Operating Systems

November 2023

154 /342

Processes or Threads?

You may have heard of threads more rather than processes.
Common term in parallel programming frameworks, such as GPU programming.
Here we implied that a process performs a single thread of execution.

A single thread of instructions being read in sequence by CPU.

Multi-threading

Nowadays Operating Systems extend processes to be able to perform multiple tasks at
once—for example, two cores executing at different locations in the binary of a process. PCB
and other parts of OS have to be expanded. See Week 6 for detail.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 155 /342

Process Scheduling

The objective of multi-programming is to maximize CPU utilization.

Time-sharing (or multitasking) adds another requirement—the switching between processes
should be frequent enough for users to interact with the running programs.

Process Scheduler

Integral part of operating systems which meets the constraints posed by time-sharing and
multi-tasking by selecting a process to run from a set of available processes.

.

Multiprocessing

Each CPU core can run one process at a time; N CPUs can run N processes. If more processes
than cores are created, some will have to wait. Degree of multiprogramming defines the
number of processes currently in memory.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 156 / 342

Process Scheduling

Two types of processes:
@ 1/0 bound: most time spent waiting for memory.
@ CPU bound: most time spent in execution.

The types of processes going through the system will affect the objectives of
multiprogramming and time-sharing.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 157 /342

Process Scheduling: Queues

Processes enter the system and are put into a ready queue.
Queue is usually a linked list, where each PCB links to the next.

There may be other queues, for example wait queue for processes waiting 1/0.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 158 /342

Process Scheduling: Queues

queue header PCB , PCB ,
ready head T =
queue tail N registers registers
PCB; PCB,, PCBg
SN +—
wait head 1
queue tail 3

M. Mikaitis (Leeds)

COMP2211 Operating Systems

November 2023

159 /342

Process Scheduling: Queuing Diagram

—
ready queue CPU
@ 1/0 wait queue 1/0 request
time slice
expired

: hild
child 5 i
terminates lation cre?'z)ec;?slld
wait queue P
interrupt interrupt wait for an
occurs wait queue interrupt

M. Mikaitis (Leeds) COMP2211 Operating Systems

November 2023 160 /342

Process Scheduling: CPU Scheduler

‘ Role of a scheduler: from a set of ready select one and run on CPU. ‘

Scheduler is working frequently;

|/O bounds processes may execute for a few milliseconds before waiting for /0.

@ CPU-bound processes may require CPU for extended durations, but scheduler unlikely to
grant it.

Typically designed to switch processes very frequently (less than every 100 milliseconds).

Memory Swapping

This technique may decide to move a process from memory to disk, reduce the degree of
multiprogramming and thus reduce the active contention for the CPU. Later the process can
be returned to memory and continued where it left off (state save/restore required).

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 161 /342

Process Scheduling: Context Switching

Remember interrupts cause CPU to pause current task and do some kernel routine.

@ CPU needs to save the current context of a process and later restore it for continuing

running it.
o Context is represented in the PCB of a process.
@ Register contents, state of the process, memory management information.

Perform a state save of the current process and a state restore of a different process.

Context switch is pure overhead as CPU is not executing any process instructions.‘

Typical speed: several microseconds. Depends on size of state needed to save/restore.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 162 /342

Process Scheduling: Context Switching

process P, operating system process Py

interrupt or system call

executing J-L
T save state into PCB,
.

reload state from PCB, 1

ridle interrupt or system call executing

save state into PCB;

o idle

reload state from PCB,

idle

executing]'[

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 163 /342

Quiz (5 minutes)

If you can, go to https://app.tophat.com/e/798592

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 164 / 342

https://app.tophat.com/e/798592

Part Ill: Process Manipulation

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 165 /342

Operations on Processes: Creation

Processes may create several new processes during execution.

Creating process is called a parent process and the new process are called children.

New processes can in turn create more—this forms a tree of processes.

Process identifier (pid) is usually used to identify each process.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

166 / 342

Operations on Processes: Creation

Linux example

systemd
pid=1

tesh
pid = 4005

‘systemd created on boot; it starts the processes for various services. ‘

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

167 / 342

Operations on Processes: Creation

Options for resources for the child processes:
@ Obtain directly from OS.

@ Share a subset of resources from a parent.

Restricting child process to a subset of the parent’s resources avoids overloading the system
through creation of many child processes.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 168 /342

Operations on Processes: Creation

When a process creates another process, two possibilities:
@ Parent and child execute concurrently (not necessarily in parallel).

@ Parent waits until some or all of its children terminate.

Address space also has two possibilities:
e Parent and child have the same program and data (xv6 fork).

@ The child has a new program loaded into it (xv6 fork and then exec).

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

169 / 342

Operations on Processes: Creation

In UNIX, a new process is created by fork():
@ New process has a copy of address space of the original process.

@ Both processes continue execution at the instruction after the fork.

o fork() returns zero in the child and pid of the child in the parent.

After the fork () usually exec() is called:
@ Process’ memory space is replaced by a new program.

Load a binary file into memory.

°
@ Destroy the memory image of the program containing exec system call.
°

Parent can then create more children, or wait until termination of current ones.

M. Mikaitis (Leeds) COMP2211 Operating Systems

November 2023

170 / 342

Operations on Processes: Creation

parent (pid > 0)

parent resumes

parent

child (pid = 0)

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 171 /342

Operations on Processes:

M. Mikaitis (Leeds)

Creation in UNIX with C

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()
pid t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { /* child process */
execlp("/bin/1s","1s",NULL) ;

else { /* parent process */
/* parent will wait for the child to complete */

wait (NULL) ;
printf("Child Complete");

return 0;

COMP2211 Operating Systems November 2023

172 /342

Operations on Processes: Termination

Process terminates when it asks OS to delete it using exit () system call.
All the resources: physical and virtual memory, open files, |/O buffers are reclaimed by the OS.

A parent may forcibly terminate a child process:
@ If the child has exceeded its usage of some allocated resources.
@ The job that the child is doing is no longer required.

@ The parent is exiting and it is required to terminate the sub-tree of processes before
exiting (cascading termination).

Zombie processes

Parents may call wait () to wait for their children to terminate. The processes that have
terminated but whose parents have not yet called wait () are called zombie processes—we
have to keep them in the system to return the status to the parent eventually.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 173 /342

Part IV: Communicating Processes

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 174 /342

Interprocess Communication

Active processes on the system can either be Independent or cooperating.
A process is independent if it does not share any data while executing.
A process is cooperating if it can affect or be affected by other processes.

Process cooperation useful in a few scenarios:
o Information sharing: for example, copy-paste between programs.
o Computation speedup: split big tasks into multiple subtasks.

@ Modularity: The system may be designed to have separate processes or threads working
cooperatively to achieve some function.

When processes cooperate, they require interprocess communication (IPC).‘

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 175 /342

Interprocess Communication

Two fundamental concepts:

@ Shared-memory model: agree a region of memory to share among cooperating
processes. Read and write there to exchange info.

o Message-passing model: use a message-passing protocol to send and receive
information.

Both are implemented in operating systems.

Message-passing model is useful when no conflict resolution is desired. However, it is slower,
since each read/write requires kernel ops.

With share-memory model, conflicts and race conditions may appear (two processes write).

Message-passing is required to communicate between different systems that do not share
memory.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 176 / 342

Interprocess Communication

|: process A process A —
shared memory :I — process B
process B
message queue
—{mo[m+[m;[ms] ... [mple
kernel
kernel
@) (b)

M. Mikaitis (Leeds)

COMP2211 Operating Systems

November 2023

177/ 342

Interprocess Communication: Pipes

Pipes were one of the earliest UNIX mechanisms for interprocess communication.
An example of shared-memory model of communication.

Four key design considerations:

Bidirectional or unidirectional communication?

o If bidirectional, can data travel both direction at once?

@ Do we need a relationship (parent-child) between communicating processes?
@ Can we use pipes over network or locally only?

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

178 / 342

Interprocess Communication: Ordinary Pipes

@ Produced-consumer model: producer writes to the write end of the pipe while the
consumer reads from the read end.

@ Unidirectional: we need two pipes for communicating back to the producer.

@ In UNIX this is constructed using pipe(int p[]) where p[0] is the read end of the pipe
and p[1] is the write end.

@ p[0] and p[1] are special types of files in UNIX, thefore fork() in the parent will make
the child inherit these.

Parent Child

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 179 /342

Interprocess Communication: Named Pipes

Ordinary pipes provide a simple mechanism for processes to communicate, but they only exist

until processes exist and communicate. When they terminate, the pipe disappears.

Named pipes (FIFOs) in UNIX provide extra functionality:
o Bidirectional communication.
@ No parent-child relationship needed.

@ Several processes can use the pipe for communication.

@ Pipe remains active after communicating processes terminate.

Named pipes are bidirectional, but provide only half-duplex transmission (only one direction at

a time).

M. Mikaitis (Leeds) COMP2211 Operating Systems

November 2023

180 / 342

COMP2211: Progress

Week Topic

1 tntroduction-to-0S

2 OS5-services

3 Processes

4 Xv6: Live coding and Q&A from the xv6 book

5 Reading week. No scheduled labs or lectures
6 Threads and concurrency. Assignment due this week.
7 Scheduling

8 Process synchronisation

9 Memory management

10 File system

11 Module review

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 181 /342

fud

UNIVERSITY OF LEEDS

COMP2211 Operating Systems
Combined slides: Weeks 1-8

Mantas Mikaitis

School of Computing, University of Leeds, Leeds, UK

Semester 1, 2023/24

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 182/342

Progress

Week

Topic

© 00 NSO OB W N

==
= O

(current)

Introduction to OS

OS services

Processes

Xv6: Live coding and Q&A from the xv6 book
Reading week.

Threads and concurrency. Assignment due this week.
Scheduling

Process synchronisation

Memory management

File system

Module review

M. Mikaitis (Leeds)

COMP2211 Operating Systems November 2023

183 /342

Reading List

We will be mainly using the Operating System Concepts (OSC) 10th ed., 2018, and the 3rd
edition of the xv6 book (XV6), 2022. These slides are based on OSC (see the reference list).

Week Reading materials

1 Chapter 1 OSC. Chapter 1 XV6.

2 Chapter 2 OSC. Chapter 2 XV6.

3 Chapter 3 OSC.

4 Reread Chapters 1-2 XV6.

5 Reread Chapters 1-3 OSC.

6 (current) Chapter 4 OSC.

7 Chapter 5 OSC.

8 Chapters 6—8 OSC.

9 Chapters 9-10 OSC. Chapter 3 XV6.
10 Chapters 13-15.

11 Reread Chapters 4-10, 13-15 OSC.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 184 /342

Objectives

@ Discuss the motivation, benefits, and challenges in designing multithreaded processes.
@ Talk about the basic components of a thread.

@ Describe mechanisms for threading.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 185 /342

BigQuiz on Week 1,2 and 3 material (15-20 minutes)

If you can, go to https://app.tophat.com/e/798592

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 186 /342

https://app.tophat.com/e/798592

Part |: The Concept of Threads

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 187 /342

Threads: Introduction

In week 3 we have explored the concept of processes, which assumes that it is a running
program that has a single thread of control.

For interest, xv6 supports only single-threaded processes. See p. 29 of the xv6 book.

In modern computing most operating systems provide capabilities for processes to have
multiple threads of control.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 188 /342

Threads: Introduction

What is a Thread?

A basic unit of CPU utilization; it comprises a thread ID, a program counter (PC), a
register set, and a stack.

@ Same threads within a process share: code section, data section, and other resources (for
example open files).

@ A traditional process has a single thread of control.

@ Processes with multiple threads can perform more than one task at a time.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 189 /342

Single and Multithreaded Processes

| code | [data | | files | | code | [data | [files
‘registers| ‘ PC | | stack ‘ |registers‘ |registers‘ ‘registers‘
| stack ‘ | stack ‘ ‘ stack |

[rc || pc ||[Pc |
thread——> ;

-

single-threaded process multithreaded process

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 190/ 342

Multithreading

Examples:

@ Application creating photo thumbnails from a collection of images uses a different thread
for each image.

@ A web browser displays images or text in one thread and retrieves network data in another.

@ Word processor has a thread to display Ul, a thread to respond to keystrokes, and a
thread for spellchecking.

Multicore Systems and Threads

Applications can be designed for threads to run in parallel on multicore systems.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 191 /342

Example: Multithreading in a Web Server

In some situations, applications may be required to perform several similar tasks.
For example, a web server accepts client requests for web pages, images, sound.
Several users may request access at the same time.

Running a single thread, the web server would hold other users, potentially for
prolonged periods.

One approach: tree of processes, with the root being the server and children being user
requests—time consuming process creation and resource use significant.

Since similar tasks are performed on requests, multithreading is a more efficient solution.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 192 /342

Example: Multithreading in a Web Server

client

(1) request

M. Mikaitis (Leeds)

Y

server

(2) create new
thread to service
the request

thread

N

(3) resume listening

for additional
client requests

COMP2211 Operating Systems

Y

November 2023

193 /342

Multithreading

Other motivating aspects:

@ Most OS kernels are multithreaded; for example, during Linux boot time, threads are
created for managing devices, memory management, or interrupt handling.

@ Various applications that parallelize well can take advantage of multithreading: sorting,
tree algorithms, graph algorithms.

e Data mining, graphics, artificial intelligence: people aim to design algorithms to exploit
multicore architectures.

@ Sometimes problems are embarrassingly parallel, without data dependencies, such as
adding two vectors together. These problems can be easily solved across many cores.

Sign up for COMP3221 next year to get into the details.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 194 /342

Multithreading: Benefits

Four major categories:
© Responsiveness: if one part of an application blocks, other threads can continue working.
@ Resource sharing: threads share memory resources of a process to which they belong.

© Economy: allocating resources when creating processes is costly; context switch is also
costly. Threads are cheaper in both aspects.

@ Scalability: Multi-threaded processes can exploit multiple cores, whereas a
single-threaded ones can only run on one core.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 195 /342

Part Il: Introduction to Parallel Computation

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 196 /342

Multicore Programming

Recall that a multicore environment is an environment in which single processing chip
contains multiple computing cores.

The communication within cores on the same chip is very fast.

Multithreaded programming provides a mechanism for an efficient use of multicores.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 197 /342

Multicore Programming: Concurrency or Parallelism?

‘Concurrency (top) and parallelism (bottom) refer to different concepts.

single core | T, T, Ty T, | T4 T, T, T, T,
time
core 1 T 1 T3 T1 T3 T1
core 2 T2 T 4 T2 T 4 T2
time

M. Mikaitis (Leeds)

COMP2211 Operating Systems

November 2023

198 /342

Multicore Programming: Concurrency or Parallelism?

On single core, concurrency means interleaving the execution of threads in time.

On a multicore system, concurrency means that some threads can execute simultaneously,
which means there is parallelism.

’We can have concurrency without parallelism.

Historical perspective

Before multi-processor/core architectures became prevalent, most systems had a single

processor and operating systems were designed to provide illusion of parallelism by rapidly
switching processes.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 199 /342

Multicore Programming: Key Challenges in Designing Programs

System designers and application programmers are pressured to make better use of multiple
cores—this is ongoing.

The systems are growing in size, both at large (warehouse computers) and small (laptops,
phones) scale.

@ Operating Systems have to accommodate multicore hardware.
@ Old single-threaded applications have to be ported.

@ New algorithms have to be developed from scratch (see the whole topic of parallel
algorithms).

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 200 /342

Multicore Programming: Key Challenges in Designing Programs

For example, see the TOP500 list: https://top500.0rg/lists/top500/1ist/2023/06/.

Rank System Cores - T B i ” %

=

1 Frontier - HPE Cray EX235a, AMD Optimized 3rd 8,699,904
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE
DOE/SC/0ak Ridge National Laboratory
United States

2 Supercomputer Fugaku - Supercomputer Fugaku, A64FX 7,630,848
48C 2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science

Japan
3 LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation 2,220,288
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE ~ 9 million cores. Photo source:
E.uroHPC/CSC Wikipedia.
Finland

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 201 /342

https://top500.org/lists/top500/list/2023/06/

Multicore Programming: Key Challenges in Designing Programs

O ldentifying tasks: examine applications and find workloads that can be divided, ideally
into independent tasks.

Balance: make sure parallel tasks perform similar amounts of work.

Data splitting: The data accessed and manipulated by parallel tasks have to be divided.
Data dependency: Do tasks depend on output data from other tasks; synchronization
may be required.

Testing and debugging: Program running on N cores has many execution paths.
Debugging more difficult than in a single-threaded case.

© 000

Many people believe that an entirely new software design approach will be needed in the
future. Computer Science educators often talk about teaching software development through
increased emphasis on parallel programming.

Question: how many of you have done some parallel code development/debugging/reading?‘

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 202 /342

Multicore Programming: Types of Parallelism

data
| | l |
data l l l 1
parallelism
core core q core core 3
data
task
parallelism
core 0 core 4 core core 3

Top: data parallelism; bottom: task parallelism.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 203 /342

Multicore Programming: Types of Parallelism

Data parallelism: distribute data across N cores, each to receive a subset of the whole data.

Example: sum a vector of size K. Single-core would get elements from 0 to K — 1 and sum
them in series. On N = 2 core system, core 1 would get elements 0 to K/2 — 1 and core 2
would get elements K/2 to K — 1.

Task parallelism: distribute different tasks (operations) across multiple cores. Each task may
require part or the whole of the input data.

In practice you may likely see a hybrid approach.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 204 /342

Multicore Programming: Amdahl’s Law

What speedup can we expect when we add additional cores to an application that contain
both serial and parallel parts?

speedup <

N

where N is the number of cores, S is a portion of the application that must be performed
serially.

S+ 15

Example: S = 0.25 (25% of the application is serial and 75% is parallel). If N =2 (2 cores),

the speedup is no greater than 1.6x.

If we now set N =4 (4 cores), the upper bound on the speedup is 2.28x (not 4x!).

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

205 / 342

Multicore Programming: Amdahl’s Law

Speedup
®

o L H H . .
0 2 4 6 8 10 12 14 16
Number of Processing Cores.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 206 /342

Part IlI: Libraries for Multithreading

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 207 /342

Multithreading Models

?

user threads

S8

:

S ¢

kernel threads

user
space

kernel
space

Support may be provided for threads at user level and kernel level: user threads and kernel

threads.

User threads work in user mode and kernel threads require direct OS support.

What is the relationship between user and kernel threads?

M. Mikaitis (Leeds)

COMP2211 Operating Systems

November 2023

208 / 342

Multithreading Models: Many-to-One

user threads

RUBAE:

§ kernel
space

kernel threads

Disadvantage: entire process blocks if one thread calls a blocking system call. Multiple threads
are unable to run in parallel — very few systems implement this.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 209 /342

Multithreading Models: One-to-One

user threads

T =

S S g g |lem

kernel threads

Advantages: another thread can run when one calls a blocking system call. Parallel processing
doable.

Disadvantage: Each user thread requires creating a kernel thread. Performance may suffer.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 210 /342

Multithreading Models: Many-to-Many

user threads

S5 5D e

W

é g ; kernel
space

kernel threads

Advantage: Number of kernel threads customizable according to an application or machine
requirements. Number limited; does not depend on how many user threads. Kernel can run
threads in parallel.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 211 /342

Multithreading Models: two-level-threads

user threads

S 35 5 2 me
S0 T T A e

kernel threads

Combined approach which allows specific user threads to be assigned a kernel thread, but still
multiplex between other user and kernel threads.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 212 /342

Thread Libraries

A thread library provides an API for managing threads.

Two approaches: entirely in user or in kernel modes.

Three main libraries: POSIX Pthreads, Windows thread library, and Java thread API.
For Pthreads and Windows data declared globally is shared among threads.

Synchronous and asynchronous threading

In the asynchronous threading parent continues working concurrently with any children
threads created. In the synchronous threading parent waits for children to complete: for
example, parent may combine the results from children.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 213 /342

Thread Libraries: Pthreads

@ Pthreads is a standard API for thread fnclude <pthread.h>
creation and synchronization. #include <stdlib.h>

@ Various |IEEE standards address it. ig;_dsﬂinner(void *param) ;

o Itisa specification not an int main(int argc, char kargv[l) {
imp|ementati0n- mﬁ:j:;tgfé attr;

@ OS designers can implement the // Create a thread.
SpECiﬁcation their own way. gini::g:s;;:;ig:;i?t;:i;r, runner, argv[1il);

@ The C program on the right is a // Wait for the thread to exit.
thread_join(tid,NULL);
standard way to use pthreads. prTeacJontt:

printf("sum = %d\n",sum);

@ runner executes in a separate thread

from main. void xrunner(void xparam) {
} int i, upper = atoi(param);
@ sum is shared between both threads. sum = ©;
for (i = 1; 1 <= upper; i++)
" N N sum += i;
Look into Windows and Java threading. pthread_exit(@);

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 214 /342

Implicit Threading

Designing parallel programs manually is potentially a cumbersome task.

To better support the design of concurrent and parallel applications is to automate the
identification and creation of threads.

Offload this work from developers to compilers: implicit threading.

Advantage of implicit threading

Developer identifies tasks that can run in parallel. The environment determines the low-level
details of thread creation and management.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 215 /342

Implicit Threading: Thread Pools

Manual thread creation has two problems:
@ Thread creation may be costly; threads are discarded once finished.

@ Number of threads is unbounded: may exhaust system resources.

Thread pools

Create a number of threads at startup and make them available for doing work. The
application requests resources from the thread pool: if there is a thread available, it is
allocated; otherwise wait until a thread is placed back in the pool.

Several advantages of thread pools:
@ Servicing a request with existent thread may be faster than creating and deleting threads.
@ Thread pool limits the number of threads.

@ Thread pool can be configured based on available resources, or adjusted dynamically
based on what the applications are doing.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 216 /342

Implicit Threading: Thread Pools

main thread .- S A main thread
_—
N .y

P P

Fork-join model works for implicit threading as well:
@ A library manages threads and assignment of tasks to threads.

@ Threads are not created directly during fork. Parallel tasks are identified and designated
to threads.

@ Join mechanism provides the synchronicity.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 217 /342

Implicit Threading: Example Libraries

Fork-join library available in the Java API.

@ OpenMP is a way to augment C, C4++, Fortran programs to identify what can be
parallelized.
@ Grand Central Dispatch is Apple technology for implicit threading.

Intel Thread Building Blocks supports designing parallel C++ programs.

CUDA allows to program NVIDIA Graphic Cards to perform massively parallel
computations.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 218 /342

Implicit Threading: OpenMP example in C

1 #include <omp.h>

2 #include <stdio.h>

3

4 int main(int argc, char xargv[]) {
// sequential code

printf("I am a sequential region.\n");

#pragma omp parallel
printf("I am a parallel region %d.\n", omp_get_thread_num());

/* sequential code %/
printf("Second sequential region\n");

return 0;

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 219 /342

Implicit Threading: OpenMP example in C

#pragma omp parallel for
for (1 = 0; i < N; i++) {
clil = alil + b[il;

}

@ Take two arrays a and b of size N. We want to add the array and produce a new array c.
@ This is an embarrassingly parallel problem.

@ OpenMP pragma will divide the work among the threads it creates.

°

Different parts of the vectors will be added in parallel.

Other OpenMP features

Developers can choose several levels of parallelism. For example, set the number of threads
manually. It also allows to say whether data is shared or private among threads.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 220 /342

Activity: Discuss with Peers (5 minutes)

#pragma omp parallel for
for (1 = 0; i < N; i++) {
c[i]l = alil + b[il;

}

@ Assume that the number of available cores is 4.
o Take the length of the array N = 40.

Questions:

@ What is the maximum number of for loop iterations that will be executed in parallel at
any time?

@ How many iterations will each core run, assuming each iteration runs in the same amount
of time and all cores start at the same time?

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 221 /342

Part IV: Threading Issues

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 222 /342

Threading Issues: fork and exec calls

We have seen fork() and exec() in a small UNIX system: create a child and load and
execute a binary.

This becomes difficult in a multithreaded environment: does fork duplicate the thread or the
whole set of threads within a process?

Different fork functions may be provided to achieve either.

The exec call typically works as usual: entire process is replaced by the specified program.

Which fork to use depends on the application.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 223 /342

Threading Issues: Signal Handling

@ Signalling in UNIX is used to inform processes of events.

@ o Occurrence of some event generates a signal.
e The signal is delivered to a process.
o Process handles the signal.

@ Example events: division by zero, illegal memory access, CTRL-C key combination.

Which thread should a signal be delivered to?

Various methods exist, for example: deliver to all threads; assign one thread to deal with
signals.

On UNIX:
kill(pid_t pid, int signal)

Threads will either accept or block the signal. First thread to accept receives it.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

224 /342

Threading Issues: Thread Cancellation

We may want to terminate threads before they complete, called target threads.

For example, threads looking through a database for something can stop when one finds the
item.

Problems can occur if the target thread is updating shared data while being cancelled.

pthreads for example allows threads to disable cancellation for some time.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 225 /342

COMP2211: Progress

Week Topic

Scheduling

Process synchronisation
Memory management
File system

Module review

© 0O ~NO OB WwWwN -

= =
= O

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 226 /342

fud

UNIVERSITY OF LEEDS

COMP2211 Operating Systems
Combined slides: Weeks 1-8

Mantas Mikaitis

School of Computing, University of Leeds, Leeds, UK

Semester 1, 2023/24

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 227 /342

Progress

Week Topic

Introduction to OS

OS services

Processes

Xv6: Live coding and Q&A from the xv6 book

Reading week.

Threads and concurrency.
(current) Scheduling

Process synchronisation

Memory management

File system

Module review

O© O NO O W

[EE Y
= O

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 228 /342

Reading List

We will be mainly using the Operating System Concepts (OSC) 10th ed., 2018, and the 3rd
edition of the xv6 book (XV6), 2022. These slides are based on OSC (see the reference list).

M. Mikaitis (Leeds)

Week Reading materials

1 Chapter 1 OSC. Chapter 1 XV6.

2 Chapter 2 OSC. Chapter 2 XV6.

3 Chapter 3 OSC.

4 Reread Chapters 1-2 XV6.

5 Reread Chapters 1-3 OSC.

6 Chapter 4 OSC.

7 (current) Chapter 5 OSC.

8 Chapters 6—8 OSC.

9 Chapters 9-10 OSC. Chapter 3 XV6.
10 Chapters 13-15.

11 Reread Chapters 4-10, 13-15 OSC.

COMP2211 Operating Systems November 2023

229 / 342

Objectives

@ To introduce CPU scheduling, which is the basis for multiprogrammed operating
systems.

To describe various CPU-scheduling algorithms and understand pros and cons of each.

To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular
system.

To understand challenges with scheduling in multiprocessor and real-time systems.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 230 /342

Part |: Description of the Problem

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 231 /342

A General Problem

We are going to look at scheduling in
operating systems, but it is a general
problem (think about where else you can
notice scheduling in everyday activities).

“So what to do, and when, and in what
order? Your life is waiting.”

ALGORI THMS
4

From Algorithms to Live By, Chapter
5 on Scheduling.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 232 /342

Why CPUs need scheduling?

admitted interrupt exit

terminated

scheduler dispatch

1/O or event completion 1/O or event wait

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 233 /342

Why CPUs need scheduling?

load store
add store - CPU burst
@ Processes go through multiple phases read from fie
of CPU-IO over their lifetime. /0 burst
@ Maximum CPU utilization through store increment
multiprogramming. X e CPU burst
@ When processes wait for 10, CPU can 1O burst
be used for something.
. load st
@ What to run next? There is a need add store. }CPUbursi
. read from file
for scheduling.
wait for I/O } 1/0 burst

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 234 /342

Typical CPU Burst Lengths

frequency
p @ ® @ P B
o o o o o o o
T

n
o

Il 1 [l 1
16 24 32 40
burst duration (milliseconds)

Usually many short and a few long CPU bursts.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 235 /342

Part Il: Introduction to Process Scheduling

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 236 /342

CPU Scheduler

CPU utilization

When CPU becomes idle, OS finds work (waiting process queue).

CPU scheduler selects a process from the ready queue and allocates CPU to it.

Queue may be ordered in various ways.

CPU scheduling decisions may take place when a process changes state:

@ running — waiting,

© running — ready,

© waiting — ready,

© terminates.
@ For 1 and 4, scheduling is nonpreemptive (run as long as needed) while for 2 and 3
preemptive (may interrupt a running process).

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 237 /342

Challenges with Preemptive Scheduling

A few scenarios that cause problems:

© Process 1 is writing data, is preempted by process 2 that reads the same data.

© Process 1 asks kernel to do some important changes, process 2 interrupts while they are
being done.

Disabling interrupts

Irrespective of the challenges, most modern operating systems are fully preemptive when
running in kernel mode, but disable interrupts on certain small areas of code.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 238 /342

Dispatcher

Dispatcher gives control of the CPU to the scheduled process.
@ Switching context.

@ Switching to user mode (kernel tasks in supervisor mode).

@ Jumping to the proper location in the previously interrupted user program (set the
Program Counter register).

Dispatch latency

Time it takes for the dispatcher to stop one process and start another running.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 239 /342

Scheduling Criteria

CPU utilization—reduce amount of time CPU is idle.
Throughput—number of processes completed per time unit.
Turnaround time—amount of time to execute a particular process.

Waiting time—amount of time a process has been waiting in the ready queue.

Response time—amount of time it takes from when a request was submitted until the
first response is produced, not output (for time-sharing environment).

When designing a scheduler

It is desirable to maximize CPU utilization and throughput and to minimize turnaround time,
waiting time, and response time.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 240 /342

Part Ill: Scheduling Algorithms

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 241 /342

First-Come, First-Served (FCFS) Scheduling

Process Burst time

Py 24
P, 3
Ps 3

If processes arrive in sequence we have the following schedule:

0 24 27 30

Waiting time for P; =0, P, =24, and P3; = 27.
s 0424427
Average waiting time: =-=3=- = 17.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

242 /342

First-Come, First-Served (FCFS) Scheduling

If processes arrive instead as P, Ps, Pi:

0 3 6
Waiting time for P, =6, P, =0, and Pz = 3.

e ; . 64+0+3 __
Average waiting time: > = 3.

Substantial reduction from the previous case but in general not good.

Convoy effect—short jobs can be held waiting by long jobs.

Note that FCFS is nonpreemptive.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 243 /342

Questions?

“there’s nothing so fatiguing as the eternal
hanging of an uncompleted task,”

William James. From Algorithms to
Live By, Chapter 5 on Scheduling.

ALGORI TH

15 (o) L 1)\ (=

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

244 / 342

Shortest-Job-First (SJF)

Append each process with the length of next CPU burst.
Schedule jobs with shortest time.

SJF is optimal, but difficult to know future CPU burst lengths.
Ties broken with FCFS scheduling.

Better name shortest-next-CPU-burst.

Process Next burst time

P 6
P 8
Ps 7
Py 3
P P P P

0 3 9 16 24

e ; . 3+164+9+0 _
Average waiting time: 2 =T.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 245 /342

Predicting Lengths of Future CPU Bursts

Make an assumption
Next CPU burst likely similar to the past bursts.

tp—actual length of the CPU burst n.

Tn+1—Ppredicted value of the next burst.

0<a<l.

Tnt1 = atp + (1 —)7y,

We can tune this model through « (usually set to 0.5).

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 246 /342

Example Prediction of CPU Bursts

CPU burst (t) 6 4 6 4 13 13 13
"guess'(t) 10 8 6 6 5 9 11 12

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 247 /342

Predicting Lengths of Future CPU Bursts

Model of CPU Burst Lengths

Tnt1 = atp + (1 — a)7y

o a =0, 7,41 = T,—recent history does not count.
@ o =1, 741 = ty—only the actual last CPU burst counts.
@ Expand the formula:
Top1 = oty + (L — a)aty_1 4+ + (L — aYat,j+ -+ (1 —)" 1.
o Example: o = 0.5, 74 = 0.5t3 4+ 0.25t» 4+ 0.125¢t; + 0.06257g.

Exponential average of past CPU bursts

Each successive term has lower weighting than the newer ones, with the initial guess having
the lowest.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 248 /342

Shortest-remaining-time-first

If we allow SJF to be preemptive, it can interrupt a currently running process if it would run
longer than some new process.

Consider

Process Arrival time Next burst time

P 0 8
P, 1 4
Ps 2 9
Py 3 5
P, | P, P, P, P,
0 1 5 10 17 26

Average waiting time is 6.5—standard SJF would result in 7.75.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 249 /342

Shortest-remaining-time-first (Question, 3min)

Take 3 minutes to schedule the following processes with a preemptive shortest-job-first
scheduler. Feel free to discuss with your peers. Volunteers for the solution welcome at the
end.

Process Arrival time Next burst time

P, 0 8
P, 1 9
Py 2 7
P, 3 2
Ps 4 3

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 250 /342

Shortest-remaining-time-first (Question, 3min)

Take 3 minutes to schedule the following processes with a preemptive shortest-job-first
scheduler. Feel free to discuss with your peers. Volunteers for the solution welcome at the
end.

Process Arrival time Next burst time

P, 0 8
P, 1 9
Ps 2 7
P, 3 2
Ps 4 3

P1 runs 0 to 3; P4 interrupts, runs 3 to 5; P5 runs 5 to 8; P1 continues, runs 8 to 13; P3 then
runs; finally P2 is run.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 251 /342

Priority Scheduling

Priority scheduling

Shortest-job-first is a specific case of general scheduler that decides by priorities.

A priority (integer) associated with each process.

CPU allocated to a process of highest priority.

Aging—increase the priority proportional to waiting time.

o

o

@ Starvation—Iow priority processes may not execute.

o

o Internal priorities—time limits, memory requirements, ratio of average 1/0 burst.
o

External priorities—importance of the process, type and amount of funds being paid for
the CPUs, who is asking to run the process, and other.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 252 /342

Priority Scheduling

Process Burst time Priority

Py 10 3
P> 1 1
Ps 2 4
Py 1 5
Ps 5 2
p2 P5 P1 P3 P4
0 1 6 16 18 19

Preemptive priority scheduling
Priorities may change while a process is running.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 253 /342

Questions?

“they wrote up a fix and beamed the new
code across millions of miles to Pathfinder.
What was the solution they sent flying
across the solar system? Priority inheri-
tance.”

From Algorithms to Live By, Chapter R
5 on Scheduling.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 254 /342

Round Robin (RR) Scheduling

Time quantum (q) is defined.

CPU scheduler assigns the CPU to each process for an interval of up to 1 quantum.
Queue treated as First-In-First-Out.

Interrupts every quantum to schedule next process.

RR is therefore preemptive.

No process allocated for more than g in a row (unless there is only one).

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 255 /342

Round Robin (RR) Scheduling

o If there are n processes waiting, each process is guaranteed to get 1/n of CPUs time in
chunks of time quantum gq.

@ Each process must wait no longer than (n — 1) x g time units until its next turn to run.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 256 /342

Round Robin (RR) Scheduling

Take g = 4.
Process Burst time
P 24
P 3
Ps 3
Pl P2 P3 Pl Pl Pl Pl Pl
0 4 7 10 14 18 22 26 30
@ Small quantum—too many interrupts will reduce performance.
@ Big quantum—scheduler similar to FCFS.
@ Need a balance (according to OSC, usually g = 10 to 100 ms).
o Context switch around 10 microseconds (small fraction of q).

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

257 /342

Round Robin (RR) Scheduling

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 258 /342

Round Robin (RR) Scheduling

@ Turnaround time depends on the 125
size of the quantum. 120

@ However, it does not necessarily
improve with the size of g.

11.0

10.5

10.0

9.5

average turnaround time

Rule of Thumb

9.0

80% of CPU bursts should be shorter than
q.

M. Mikaitis (Leeds) COMP2211 Operating Systems

process

time

N

4 5
time quantum

November 2023

259 /342

Round Robin (RR) Scheduling (Question, 3min)

Take 3 minutes to schedule the following process queue with a round robin scheduler with
g = 3. Feel free to discuss with your peers. Volunteers for the solution welcome at the end.

Process Burst time

P 5
P> 12
Ps 3
Py 1

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 260 /342

Round Robin (RR) Scheduling (Question, 3min)

Take 3 minutes to schedule the following process queue with a round robin scheduler with
g = 3. Feel free to discuss with your peers. Volunteers for the solution welcome at the end.

Process Burst time

P1 5
P 12
Ps 3
Py 1

P1 runs 0 to 3;: P2 runs 3 to 6; P3 runs 6 to 9; P4 runs 9 to 10; P1 runs 10 to 12; P2 runs 12
to 15; P2 15 to 18; P2 runs 18 to 21.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 261 /342

Part IV: Optimizations of Process Scheduling

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 262 /342

Multilevel Queue Scheduling

With previous algorithms, it takes O(n) to search the queue.

Assign processes to different queues, by priority.

Can also assign to queues by process types:

© Queue for background processes (for example, batch processing)
@ Queue for foreground processes (interactive)

Each queue can have different scheduling algorithms, depending on needs.

Scheduling may be required among queues: commonly fixed-priority preemptive
scheduling.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 263 /342

Multilevel Queue Scheduling

Example queues in decreasing priority level:
© Real-time precesses
@ System processes
© Interactive processes

© Batch processes

Multilevel priority queue

No process in a lower priority queue runs while there are processes waiting in the higher
priority queues. High priority queues preempt lower priority ones.

Time slicing

| \

Another possibility is to allocate time among queues. Example: 80% to foreground queue and
20% to the background queue.

.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 264 /342

Multilevel Feedback Queue Scheduling

Dynamic queueing

Instead of fixing processes to queues, allow them to move.

Multilevel feedback queue defined by
@ number of queues,
@ a scheduling alg. for each queue,
@ a method to upgrade a process to higher priority queue,
@ a method to downgrade a process, and

@ a method to determine which queue to assign process at the start.

Multilevel feedback queue

Most general CPU scheduling algorithm due to many parameters in the definition.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 265 /342

Multilevel Feedback Queue Scheduling (Example)

Three queues (from the top): —1

o Q0—RR with g = 8 ms. :

o Q1—RR with g = 16 ms.
o Q2—FCFS. a5

Scheduling:

@ A new job enters Q0 and gets 8 ms.
@ Not finished in 8 ms—move to Q1.

© Not finished in queue 1 in another 16
ms—move to Q2.

@ Scheduled in FCFS in Q2 when queue
0 and 1 empty.

Starvation in Q2

To prevent starvation we may move old
processes to Q0/1.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 266 /342

Advantages and Disadvantages of Scheduling Algorithms

Algorithm (dis)advantages

FCFS Convoy effect a problem—Ilong jobs hold the queue.

SJF Need to predict future CPU burst lengths.

Preemptive SJF Better average waiting time than SJF.

Priority scheduler Starvation.

RR Need to tune time quantum to avoid expensive con-
text switch.

Multilevel queue Faster search than O(n).

Multilevel feedback queue Configuration can be expensive. Starvation.

There is no perfect algorithm for all cases. It is a tradeoff based on requirements of the system
and usually a combination of scheduling algorithms is implemented (See OSC OS examples [1,
Sec. 5.7]).

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 267 /342

Questions?

“In fact, the weighted version of Shortest
Processing Time is a pretty good candi-
date for best general-purpose scheduling
strategy in the face of uncertainty.”

From Algorithms to Live By, Chapter Vhrbrnd
5 on Scheduling. To Live

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 268 /342

Part V: Remarks on Multi-Processor Scheduling

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 269 /342

Multi-Processor Scheduling

Traditionally term multi-processor referred to systems with multiple physical cores. Now we
use it to describe systems with either several physical or virtual cores/threads.

One approach to scheduling is to have one master processor handling scheduling (assymetric
multiprocessing). Master becomes potential bottleneck.

Another is symmetric multiprocessing (SMP)—each processor handles its scheduling. Most
common (Windonws, Linux, macOS, Android, iOS).

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 270 /342

Multi-Processor Scheduling: SMP

Two approaches in SMP

1) Common ready queue—each processor takes processes/threads from that queue (potential
clashes). 2) Each processor has its own queue.

T
T T
(W[5 5]]T] b T T
L7 : S -E -ﬁ -E
A N 1 | |
< v Sa v v v
| core| |corey| ... |core,| | coreq| |core] ... |core,

common ready queue per-core run queues

@ (b)
M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 271 /342

Multicore Processors

Relatively recent trend is to place multiple cores on chip (multicore).

Speed and energy efficiency.

Memory stall—cores spend significant amount of time for memory (since these days
cores are much faster than memory).

Multithreading—hardware assisted mutliple threads per core.

When one thread is in memory stall, work on another.

(]

OS sees different hardware threads as separate CPUs.

thread, c M c M c M c
_threads || ¢ M c M c M c
time

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 272 /342

Multicore Processors: Two Levels of Scheduling

level 1

level 2 | [....

processing
core

M. Mikaitis (Leeds)

COMP2211 Operating Systems

software threads

hardware threads
(logical processors)

November 2023

273 /342

Load balancing

@ With SMP we need to utilize all CPUs efficiently.

@ Load balancing attempts even distribution.

@ Only necessary on systems with separate queues for each CPU.

@ Push migration—a task checks the load on each CPU and moves threads from CPU to
CPU to avoid imbalance.

@ Pull migration—idle processor pulls waiting tasks from busy processors.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 274 /342

Processor Affinity

@ When a thread runs a processor, the cache is “warmed up” for that thread.

@ We say that a task has affinity for the processor it's running on.

@ When a task is moved, say due to load balancing, we have a big overhead in terms of
cache.

@ Invalidating and repopulating caches is expensive.

o Soft affinity—OS will attempt to keep the process on the same core, but load balancing
can move It.

o Hard affinity—processes specify a list of processes on which to run.

@ Usually both methods are available.

Implications on scheduling

Load balancing and processor affinity both may have implications on scheduling.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 275 /342

Questions?

“the Linux core team, several years ago,
replaced their scheduler with one that was
less ‘“smart” about calculating process
priorities but more than made up for it by
taking less time to calculate them.”

-
I
"'»“‘

ALGORI THMS

From Algorithms to Live By, Chapter
5 on Scheduling.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 276 / 342

Part VI: Scheduling with Deadlines: Real-Time Processing

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 277 /342

Real-Time CPU Scheduling

@ Real-time systems categorized into two:
© Soft real-time: guarantee preference for critical processes.
© Hard real-time: guarantee completion by deadline.

@ Two types of latencies affect performance:

@ Interrupt latency: time from arrival to interrupt service routine.
@ Dispatch latency: time for dispatcher to stop current process and start another.

Hard real-time systems

Various latencies should be bounded to meet the strict requirements of these systems.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 278 /342

Real-Time CPU Scheduling

task T running

interrupt

interrupt
latency

determine
interrupt
type

context
switch

ISR

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

279 /342

Real-Time CPU Scheduling

event

response interval

interrupt
processing

response to event

process made
available

M. Mikaitis (Leeds)

l&——— dispatch latency ———»

real-time
process
execution

le— conflicts dispatch —»{

R ’
time
COMP2211 Operating Systems

P>

November 2023

280 / 342

Priority-Based Scheduling

Real-time systems

It is essential to have a priority-based preemptive scheduling for real-time systems. Usually
real-time processes have highest priority.

Priority-based preemptive scheduling gives us soft real-time functionality.

Additional scheduling features required for hard real-time.
Some definitions:

@ Processes are periodic—require CPU at constant intervals.
@ Processing time t, deadline d, period p. Here 0 <t < d < p.

Admission control

Schedulers take advantage of these details and assign priorities based on deadlines and period.

Admission control algorithm may reject the request as impossible to service by the required
deadline.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 281 /342

Priority-Based Scheduling

| P I p I P |
| 1 I

| d |
|

-
[1]
|

Time

period; period, periods

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 282 /342

Rate-Monotonic Scheduling

@ Upon entering the system, each periodic task assigned priority o %.

@ Rationale: prioritize processes that require CPU more often.
Example:

Process p t d

P 50 20 50
P> 100 35 100

P1 has higher priority since the period is shorter.

Rate-monotonic scheduler:

Deadlines P, Py Py P4 P, Py
LR [Py [P Py, |, [P | Py [R Pof, | |
0 10 20 30 40 50 60 70 80 90 100 110120 130 140 150 160 170 180 190 200
COMP2211 Operating Systems November 2023 283 /342

Rate-Monotonic Scheduling

Now we make the requirements more strict for Py:

Process p t d

P 50 25 50
P 80 35 80

P1 has higher priority since the period is shorter.

Rate-monotonic scheduler:

Deadlines P4 P, P4 Py Ps
! | | Vo
‘ R | G | P ‘ Fo | |

| | | | | | |
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

P, failed to complete by d = 80! The total CPU utilization is 25/50 + 35/80 = 0.94, but the
problem was that the scheduler starts P; again before P, completes.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 284 /342

Earliest-Deadline-First Scheduling

| think you have been using this one in the past weeks! ©
Priorities not fixed in advance—the earlier the deadline, the higher priority.

Deadlines Py P, P, Py P2
‘ R | | ity | R | P2 | R | N | !]
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

At time 50 process P, is not preempted by P; because its next deadline (80) is earlier than
process Pi's next deadline at time 100.

EDF Scheduling

No requirement of the period, just the deadline, therefore processes do not need to be periodic
as with rate-monotonic scheduling.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 285 /342

Earliest-Deadline-First Scheduling (Question, 5min)

Take 5 minutes to schedule the following process queue with a Earliest-Deadline-First

Scheduling. Feel free to discuss with your peers. Volunteers for the solution welcome at the
end.

Process p t d

P 50 30 50
P> 70 40 70

Don't forget the aforementioned admission control.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 286 /342

Earliest-Deadline-First Scheduling (Question, 5min)

Take 5 minutes to schedule the following process queue with a Earliest-Deadline-First

Scheduling. Feel free to discuss with your peers. Volunteers for the solution welcome at the
end.

Process p t d

Py 50 30 50
P 70 40 70

P1, P2 P1 P2 P1 P2 P1
0 30 70 100 140 150
P1 P2 P1 P2 P1

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 287 /342

Scheduling in XV6

Scheduling occurs in two situations:
@ Running process runs sleep or wait.
e XV6 periodically forces scheduling (round-robin with quantum of ~ 100 ms).
@ Scheduler exists as a separate thread per CPU.
@ Queue of up to 64 processes available.
@ See kernel/proc.c for further detail. Scheduler in the function void
scheduler(void).

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 288 /342

Questions?

“there’s no choice but to treat that
unimportant thing as being every bit as
important as whatever it's blocking.”

-
I
"'»“‘

From Algorithms to Live By, Chapter
5 on Scheduling.

ALGORI THMS

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 289 /342

COMP2211: Progress

Week Topic

Process synchronisation
Memory management
File system

Module review

© 0O ~NO OB WwWwN -

= =
= O

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 290 /342

fud

UNIVERSITY OF LEEDS

COMP2211 Operating Systems
Combined slides: Weeks 1-8

Mantas Mikaitis

School of Computing, University of Leeds, Leeds, UK

Semester 1, 2023/24

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 291 /342

Progress

Week Topic

Introduction to OS
OS services
Processes
Xv6: Live coding and Q&A from the xv6 book
Reading week.
Threads and concurrency.
Scheduling

(current) Process synchronisation
Memory management
File system
Module review

OO0 N O 1B WN

[EE Y
= O

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 292 /342

Objectives

@ Discuss why we need process synchronisation.
@ Present various solutions: hardware and API level.

@ Discuss new challenges that those solutions introduce.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 293 /342

Reading List

We will be mainly using the Operating System Concepts (OSC) 10th ed., 2018, and the 3rd
edition of the xv6 book (XV6), 2022. These slides are based on OSC (see the reference list).

M. Mikaitis (Leeds)

Week

Reading materials

1
2
3
4
5
6
7
8

9
10
11

(current)

Chapter 1 OSC. Chapter 1 XV6.
Chapter 2 OSC. Chapter 2 XV6.
Chapter 3 OSC.

Reread Chapters 1-2 XV6.
Reread Chapters 1-3 OSC.
Chapter 4 OSC.

Chapter 5 OSC.

Chapters 6-8-0SC Chapter 6.
Chapters 9-10 OSC. Chapter 3 XV6.
Chapters 13-15.

Start rereading all chapters.

COMP2211 Operating Systems November 2023

204 / 342

Part |: Description of the Problem

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 295 /342

Process Synchronisation: Motivation

@ By now we know that OS typically consists of many processes/threads running either
concurrently or in parallel.

@ Threads often share data.

@ OS continually updates various data structures to support multithreading.

Multiple threads may want to update shared data at the same time.

@ If access to shared data is not controlled, we may get corrupted data values.

@ Process synchronisation involves methods for control of access to shared data to avoid
such issues.

@ This week we will learn to recognize the need for process synchronisation.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 296 / 342

Process Synchronisation: A Few Reminders

Recall cooperating processes that can affect or be affected by other processes.

Shared data through shared memory or message passing. Concurrent access may cause data
inconsistency.

Last week we studied scheduling, which is the key in achieving concurrency:
@ Scheduler rapidly switches between processes.
@ One process may be interrupted at any time by another.

@ Processes in reality may be interrupted hundreds of times, pausing what they are doing.

Parallelism involves multiple instruction streams running at the same time.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 297 /342

Example 2-thread code in Pthreads: who can spot a problem?

1 <pthread.h>

2 <stdio.h>

5] <stdlib.h>

4

5 int x = 0;

6 void *runneri();

7
8 int main(int argc, char xargv[]) {

9 pthread_t tidl, tid2;
10 pthread_attr_t attr;

12 // Create two threads.

13 pthread_attr_init(&attr);

14 pthread_create(&tidl, &attr, runnerl, NULL);
15 pthread_create(&tid2, &attr, runnerl, NULL)

17 // Wait for the threads to exit.
18 pthread_join(tidl,NULL);
19 pthread_join(tid2,NULL);

20

21 printf("x = %d\n",x);
22 }

23

24 void *runnerl() {

25 x=X+1;

26 pthread_exit(@);

27 }

M. Mikaitis (Leeds COMP2211 Operating Systems November 2023 298 /342

Race conditions

A Race condition arises when several processes manipulate data concurrently.

Outcome of execution depends on a particular order.

It is usually difficult to predict the order of execution and it may change on different runs of a
multithreaded application.

In our example we need to make sure that only one thread can manipulate x at any time.

We need some way of synchronizing processes/threads.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 299 /342

Race conditions

Race conditions can arise in OS as different parts manipulate shared resources.
Race conditions also arise in multithreaded user applications.

Increasing use of multicore systems makes this an important problem.

Applications are being developed to run in parallel on many cores, sharing data among
different parts.

Mechanisms to secure against race conditions is an important part of the systems these
days.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 300/ 342

The Critical-Section Problem

Consider a system with n processes/threads Pg, P, ..., Pp_1.

@ Each process has a critical section of code.

@ In that section, shared data is being accessed (shared among at least two processes).

@ When a process is executing instructions in the critical section, no other process can do

SO.

@ Each process must request permission to enter their critical section.

@ The entry section implements the
request.

@ The exit section may do some
tidying up after the critical section.

@ The rest of the code is called the
remainder section.

M. Mikaitis (Leeds) COMP2211 Operating Systems

while (true) {

entry section

critical section

exit section

remainder section

November 2023

301 /342

The Critical-Section Problem

A solution to this problem should meet the following.
© Mutual exclusion: Only one P; can be in a critical section.
© Progress: If one process asks to execute its critical section, only processes not in their
remainder section can participate.

© Bounded waiting: There should be a limit on a number times other processes can enter
their critical sections, when some other process is waiting. Avoid the problem of process
starvation (see W7 on scheduling).

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 302 /342

Part |I: Software Solutions to Process Synchronisation

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 303 /342

Race Conditions in the Kernel: File Opening/Closing

Consider a kernel data structure that maintains a list of open files in the system.

It must be modified when a new file is opened/closed.

If two processes open/close files simultaneously, there may be a race condition on this data
structure.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 304 /342

Race Conditions in the Kernel: Getting PIDs

2 ;

pid_t child = fork (); pid_t child = fork ()

request request
pid pid

next_available_pid = 2615

return return
2615 2615

child = 2615 child = 2615

time

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

305 /342

The Critical-Section Problem

The critical-section problem can be solved in single-core environment by disabling interrupts
during the execution of critical code.

One sequence of instructions would be run and we would know that nothing interferes with the
section that modifies the shared data.

In a multiprocessor environment this is not going to work since two or more cores can write to
a shared location at the same time.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 306 /342

The Critical-Section Problem in the Kernel

Two approaches are used in kernels:
© Preemptive kernels
@ Nonpreemptive kernels

The latter does not allow processes to be interrupted while they are in kernel mode. Safe from
race conditions on kernel data structures.

Preemptive kernels need to solve the critical-section problem.

Preemptive vs nonpreemptive kernels

Why would anyone favour preemptive kernels if they have this problem? More responsive since
there is less risk of lengthy processes holding the CPU.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 307 /342

Basic Software Solution to the Critical-Section Problem

while (true) {

o Peterson’s solution. flagli] = true;
@ No guarantee this works on modern turn = j;
. while (flag[j] && turn = = j)
architectures. ;
@ Good starting point to understand solutions. /% critical section */
@ Restricted to two processes: Py and P;. flag[i] = false;
@ When talking about P; we use P; to refer to

/* remainder section */

the other process.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 308 /342

Basic Software Solution to the Critical-Section Problem

. hil t
@ Variables turn and flag shared. white (trueld

@ turn indicates whose turn it is to enter the flag[i] = true;

turn = j;
crit. sec. while (flag[j] && turn = = j)
e flagl[i] indicates whether process i is ready ’
to enter the crit. sec. /* eritical section */
@ All 3 conditions of the crit. sec. problem flag[i] = false;

solution are met.
@ See OSC p. 263 for proof.

/* remainder section */

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 309 /342

Peterson’s Solution on Modern Architectures: Instruction Reordering

@ This may not work on modern

architectures due to instruction Consider shared data between two threads:
reordering. boolean f = false
@ Instruction reordering is performed int x =0
when there are no data Thread
dependencies between them. Thread 1:
@ On single-threaded applications while (!f)
reordering does not impact the final ;
result. print x;

@ On multi-threaded applications it Thread 2:
may change the final result.

x = 1;
@ See the example on the right: last f — true:
two lines in Thread 2 may be
reordered.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 310/ 342

Peterson’s Solution on Modern Architectures: Instruction Reordering

while (true) {

flag[i] = true;

turn = j;
while (flag[j] && turn = = j)
@ Consider what happens if the first two lines of '
the while loop are reodered. /* critical section */

flag[i] = false;

/* remainder section */

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 311 /342

Peterson’s Solution on Modern Architectures: Instruction Reordering

process ;, ——> > | flag[0] = true —>| cs ;

process —)l turn =0, flag[1] = true |—>| cs g

1

time

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 312 /342

Quiz

If you can, go to https://app.tophat.com/e/798592

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 313 /342

https://app.tophat.com/e/798592

Part Ill: Hardware Solutions to Process Synchronisation

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 314 /342

Hardware Support for Synchronisation

Software-based solutions fall short in solving the synchronisation problems arising in shared
data among threads.

Reason: a programmer provides code in certain order; modern architectures reorder for
performance, when there are no data dependencies.

We will now look at three hardware instructions created specifically for this problem.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 315 /342

Hardware Support for Synchronisation: Memory Barriers

Memory model
How a computer architecture determines what memory guarantees it will provide.

Two memory model categories:
@ Strongly ordered: memory modifications by one processor are known to other processors

immediately.
@ Weakly ordered: mem. modifications may not be immediately visible.

Kernel developer assumptions on memory models
Memory models vary; developers cannot assume what visibility of memory modifications will

there be in a shared-memory multiprocessor.

November 2023 316 /342

M. Mikaitis (Leeds) COMP2211 Operating Systems

Hardware Support for Synchronisation: Memory Barriers

This issue is addressed by computer architectures providing instructions that force changes in
shared-memory to be propagated to all processors.

This way all threads running on other processors will know about the memory modifications.

Memory barriers/fences

When a processor meets a memory barrier, it makes sure that any memory operations are
completed before starting any subsequent ones (even if reordering has been taking place). This
way other threads see the latest data.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 317 /342

Hardware Support for Synchronisation: Memory Barriers

boolean f = false
int x =0

Thread 1:
while (!f)

print x;
Thread 2:

x = 1;
f = true;

boolean f =

int x =20

Thread 1:

while (!f)
barrier ();

print x;

Thread 2:

x = 1;

barrier ();

f = true;

false

Example on the right uses memory barriers to synchronize read/write of x.

M. Mikaitis (Leeds)

COMP2211 Operating Systems

November 2023

318 /342

Hardware Support for Synchronisation: Memory Barriers

Let's return to Peterson’s critical-section problem solution. Threads 1 and 2 run the

following code and share flag and turn. Does not work if first two writes reordered, so add a
barrier there.

. while (true
while (Frue) { flag%i] :)tfue'
flag[i] = true; barrier ();
turn = j; turn—"v
while (flag[j] && turn = j) -

while (flag[j] && turn = j)
/% critical section x/ /* critical section x/
flag[i] = false; flag[i] = false;
} /* remainder section x/ /* remainder section */

}

M. Mikaitis (Leeds) COMP2211 Operating Systems

November 2023 319 /342

Hardware Support for Synchronisation: Hardware Instructions

Modern hardware provides special hardware instructios that allow:
@ Test-and-modify contents of memory.

@ Compare-and-swap two words of memory.

These instructions allow us to resolve the critical section problem.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

320 /342

Hardware Support for Synchronisation: Test-and-set instruction

boolean test_and_set(boolean xtarget) {
current_val = xtarget;
xtarget = true;
return current_val;

This is a definition of the instruction. Implemented in hardware.
These steps happen atomically—test-and-set cannot be interrupted.
In a multiprocessor, test-and-set also happens sequentially in arbitrary order.

If target stores 1, we will keep keep it unchanged.

If target stores 0, we will return 1 but change target to 0.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

321 /342

Hardware Support for Synchronisation: Test-and-set instruction

Test-and-set can be used to implement mutual exclusion (critical-section problem
requirement 1).

Each thread initializes a shared 1lock=0. Only one thread can get the lock and execute its
critical section.

do {
while (test_and_set(&lock))

/* critical section x/

lock = 0;

/* remainder section x*/
} while (true);

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 322 /342

Hardware Support for Synchronisation: Compare-and-swap instruction

int compare_and_wap(int xval, int expected, int new) {
int temp = *xval;
if (xval = expected)
*val = new;

return temp;

This is a definition of the instruction. Implemented in hardware.
These steps happen atomically—compare-and-set cannot be interrupted.

In a multiprocessor, compare-and-set also happens sequentially in arbitrary order.

Set val to new only if the value is what we expected.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

323 /342

Hardware Support for Synchronisation: Compare-and-swap instruction

Compare-and-swap can be used to implement mutual exclusion.

Each thread initializes a shared 1ock=0. Only one thread can swap the lock to 1 and execute

its critical section.)
@ First process to call

compare-and-swap will set lock=1.

while (1) { L
while (compare_and_swap(&lock, 0, 1) != 0) @ Then it will enter its critical section
; because comparison returned 0.
/* critical section x/ @ Other calls to compare-and-swap
lock — 0 won't succeed since lock now is not

equal to the expected value of 0.
/* remainder section x/

} @ The process exiting its critical section
will release the lock, allowing others
to execute their critical sections.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 324 /342

Hardware Support for Synchronisation

Remember the three requirements of the critical-section problem solution:
© Mutual exclusion: Only one P; can be in a critical section.
@ Progress: If one process asks to execute its critical section, only processes not in their
remainder section can participate.

© Bounded waiting: There should be a limit on a number times other processes can enter
their critical sections, when some other process is waiting. Avoid the problem of process
starvation (see W7 on scheduling).

Test-and-set and compare-and-swap

The solutions presented above do not meet the bounded waiting requirement: a thread may
be stuck at the atomic instructions, waiting, while other threads keep getting the lock. See
OSC for a solution.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 325 /342

Hardware Support for Synchronisation: Atomic Variables

compare-and-swap instruction is often used to build other tools for synchronisation.

Atomic variables provide atomic operation on basic data types; only one thread at a time can
modify them.

They can be used to avoid race conditions on single shared variables, when multiple threads
are updating them.

Most systems that support atomic variables also provide atomic data types and operations on
them.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 326 /342

Hardware Support for Synchronisation: Atomic Variables

Below we show how an integer can be atomically incremented using compare-and-swap

void increment(atomic_int xvar) {

int temp;
do {
temp = xvar;
} while (temp != compare_and_swap(var, temp, temp+1));
}

‘Compare—and—swap will only increment temp when it hasn't changed since we set it

Atomic variables

These variables are useful in operating systems for limited uses, such as updating
single-variable features like counters.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 327 /342

Part IV: Other Solutions to Process Synchronisation

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 328 /342

Other Solutions to Process Synchronisation

Hardware-based solutions are complicated and too low-level for application programmers to
access.

Higher-level software tools are usually available in operating systems.

@ Mutex locks

o Semaphores

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 329 /342

Mutex Locks

. while (true
@ A process must acquire a mutex lock (.) A
. " . /* acquire lock x/
before entering a critical section. L .
critical section
/* release lock x/
remainder section

@ It releases the lock when it exits the
critical section.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

330 /342

Mutex Locks

The acquire() function acquires the lock:

acquire() {
while (!available)
; /* busy wait x/
available = false;

}

The release () function releases it:

release () {
available = true;

‘ Implementations must assure calls to these are atomic.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 331/342

Example 2-thread code in Pthreads: Use of a Mutex

Modify our example code on Slide 8 to use mutex locks.

M. Mikaitis (Leeds

<pthread.h>
<stdio.h>
<stdlib.h>

void *runneri();
pthread_mutex_t x_mutex;

1
2
3
4
5 int x = 0;
6
7
8
9

int main(int argc, char xargv[]) {

pthread_t tidl, tid2;
pthread_attr_t attr;
pthread_mutex_init(&x_mutex, NULL);

// Create two threads.
pthread_attr_init(&attr);
pthread_create(&tidl, &attr, runnerl, NULL);
pthread_create(&tid2, &attr, runnerl, NULL);

// Wait for the threads to exit.
pthread_join(tidl,NULL);
pthread_join(tid2,NULL);

printf("x = %d\n",x);

26 void *xrunneri() {

31}

pthread_mutex_lock(&x_mutex);
x=x+1;
pthread_mutex_unlock(&x_mutex);
pthread_exit(0);

COMP2211 Operating Systems November 2023

332 /342

Semaphores

Mutex lock disadvantages

Mutex locks require busy waiting: while a process is in its critical section, other processes
loop continuously trying to acquire the lock, until the process holding it releases it.

Another method can provide more sophisticated ways for synchronisation:
@ A semaphore S is an integer variable.
@ S is only accessed through atomic operations wait () and signal().

wait(S) {
while (S <= 0) signal (S) {
; S++;
S—; }
}

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 333 /342

Semaphores: Use for Access Control to Resources

We can use semaphores to control access to a limited number of resources.

Initialize S to the number of resources available.
Processes that wish to use one of the resources call wait(): decrement S.

Processes that release resources call signal(): increment S.

When S=0 all resources have been taken and processes need to block until some become
available.

@ Because semaphore modifications are atomic, no two processes can capture the same
resource.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 334 /342

Semaphores: Use for Synchronisation

Take two concurrent processes P; and Ps.

Each has some code 51 and S;, respectively.

Suppose we want S1 to go first followed by S2 (not guaranteed when code runs in
parallel).

Create a semaphore synch=0.

In P; we do: In P> we do:
S1; wait(synch);
signal (synch); S2;

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 335 /342

Implementing Semaphores

@ When wait () is called and the process must wait for the semaphore, it will pause itself
(no busy waiting).

@ The process goes to the waiting queue and the scheduler selects another.

@ The process is restarted when some other process calls signal ().

o Goes from the waiting queue to the ready queue.

@ The scheduler may pick it up for running on the CPU.

See OSC Section 6.6.2 for the pseudo code that achieves this.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 336 /342

Quiz

If you can, go to https://app.tophat.com/e/798592

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 337/342

https://app.tophat.com/e/798592

Part V: Other Problems in Synchronisation

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 338 /342

Liveness

Using synchronisation tools to coordinate process introduces a possibility for processes to
wait indefinitely.

Recall three requirements for a solution to the critical-section problem.
Mutual exclusion, progress, bounded waiting.
Waiting for an undefined amount of time for a lock violates some of these.

Liveness: a system must ensure that processes can make progress.

A process waiting indefinitely means our operating system produces a liveness failure.

Providing semaphores and mutex locks opens up a possibility for liveness failure

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 339 /342

Liveness: Deadlock

Po Py

wait (S) wait(Q)
wait (Q) wait(S)
sigr.laI(S) sigr;aI(Q)
signal (Q) signal (S)

Deadlock

Every process in the set is waiting for an event that can only be caused by another process in
that same set. Since that other process is also waiting, no progress will be made and the set is
deadlocked.

See OSC Chapter 8 for further detail (optional reading).
COMP2211 Operating Systems November 2023 340 /342

Liveness: Priority Inversion

e Consider a scenario where a higher-priority process needs to read/modify kernel data held
by a mutex lock by a lower-priority process.

@ High priority process waits for lower-priority one: a scheduling problem (see
priority-based schedulers in Week 7).

Priority inversion example

Take processes A, B, C with priorities A > B > C. Imagine that process A wants a semaphore
S, which is held by C. Then imagine that process B preempts C and gets scheduled since it is

of higher priority. B has affected how long a higher-priority process A must wait for the
semaphore.

@ Avoid by implementing a priority-inheritance protocol.

@ If a process accesses a resource needed by a higher-priority process, it inherits that
higher-priority.

@ The priority is reduced back to the original priority when the resource is released.

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 341 /342

COMP2211: Progress

Week Topic

© 0O ~NO OB WwWwN -

Memory management
File system
Module review

= =
= O

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023 342 /342

References |

ﬁ A. Silberschatz, P. B. Galvin, and G. Gagne
Operating System Concepts. 10th edition
Wiley. 2018

ﬁ A. Silberschatz, P. B. Galvin, and G. Gagne
Operating System Concepts. 10th edition. Accompanying slides
https://www.os-book.com/0310/slide-dir/index.html
2020

ﬁ R. Cox, F. Kaashoek, and R. Morris
xv6: a simple, Unix-like teaching operating system
https://pdos.csail.mit.edu/6.828/2022/xv6/book-riscv-rev3.pdf
Version of Sep. 5, 2022

M. Mikaitis (Leeds) COMP2211 Operating Systems November 2023

1/2

https://www.os-book.com/OS10/slide-dir/index.html
https://pdos.csail.mit.edu/6.828/2022/xv6/book-riscv-rev3.pdf

References Il

[@ R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau
Operating Systems: Three Easy Pieces. Version 1.0
https://pages.cs.wisc.edu/~remzi/0STEP/
Arpaci-Dusseau Books. Aug., 2018

M. Mikaitis (Leeds)

COMP2211 Operating Systems

November 2023

2/2

https://pages.cs.wisc.edu/~remzi/OSTEP/

	Appendix

